GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (2)
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2010
    In:  Arteriosclerosis, Thrombosis, and Vascular Biology Vol. 30, No. 12 ( 2010-12), p. 2416-2423
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 30, No. 12 ( 2010-12), p. 2416-2423
    Abstract: Objective— Low concentrations of prostaglandin (PG) E 2 enhance platelet aggregation, whereas high concentrations inhibit it. The effects of PGE 2 are mediated through 4 G protein-coupled receptors, termed E-type prostaglindin (EP) receptor EP1, EP2, EP3, and EP4. The platelet-stimulating effect of PGE 2 has been suggested to involve EP3 receptors. Here we analyzed the receptor usage relating to the inhibitory effect of PGE 2 . Methods and Results— Using flow cytometry, we found that human platelets expressed EP4 receptor protein. A selective EP4 agonist (ONO AE1-329) potently inhibited the platelet aggregation as induced by ADP or collagen. This effect could be completely reversed by an EP4 antagonist, but not by PGI 2 , PGD 2 , and thromboxane receptor antagonists or cyclooxygenase inhibition. Moreover, an EP4 antagonist enhanced the PGE 2 -induced stimulation of platelet aggregation, indicating a physiological antiaggregatory activity of EP4 receptors. The inhibitory effect of the EP4 agonist was accompanied by attenuated Ca 2+ flux, inhibition of glycoprotein IIb/IIIa, and downregulation of P-selectin. Most importantly, adhesion of platelets to fibrinogen under flow and in vitro thrombus formation were effectively prevented by the EP4 agonist. In this respect, the EP4 agonist synergized with acetylsalicylic acid. Conclusion— These results are suggestive of EP4 receptor activation as a novel antithrombotic strategy.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2010
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 31, No. 9 ( 2011-09), p. 2080-2089
    Abstract: Interleukin (IL)-33 is the most recently described member of the IL-1 family of cytokines and it is a ligand of the ST2 receptor. While the effects of IL-33 on the immune system have been extensively studied, the properties of this cytokine in the cardiovascular system are much less investigated. Methods/Results— We show here that IL-33 promoted the adhesion of human leukocytes to monolayers of human endothelial cells and robustly increased vascular cell adhesion molecule-1, intercellular adhesion molecule-1, endothelial selectin, and monocyte chemoattractant protein-1 protein production and mRNA expression in human coronary artery and human umbilical vein endothelial cells in vitro as well as in human explanted atherosclerotic plaques ex vivo. ST2-fusion protein, but not IL-1 receptor antagonist, abolished these effects. IL-33 induced translocation of nuclear factor-κB p50 and p65 subunits to the nucleus in human coronary artery endothelial cells and human umbilical vein endothelial cells and overexpression of dominant negative form of IκB kinase 2 or IκBα in human umbilical vein endothelial cells abolished IL-33-induced adhesion molecules and monocyte chemoattractant protein-1 mRNA expression. We detected IL-33 and ST2 on both protein and mRNA level in human carotid atherosclerotic plaques. Conclusion— We hypothesize that IL-33 may contribute to early events in endothelial activation characteristic for the development of atherosclerotic lesions in the vessel wall, by promoting adhesion molecules and proinflammatory cytokine expression in the endothelium.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2011
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...