GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (2)
  • 1
    In: Journal of the American Heart Association, Ovid Technologies (Wolters Kluwer Health), Vol. 12, No. 19 ( 2023-10-03)
    Abstract: Lifestyle and metabolic diseases influence the severity and pathogenesis of cardiovascular disease through numerous mechanisms, including regulation via posttranslational modifications. A specific posttranslational modification, the addition of O ‐linked β‐ N acetylglucosamine ( O ‐GlcNAcylation), has been implicated in molecular mechanisms of both physiological and pathologic adaptations. The current study aimed to test the hypothesis that in cardiomyocytes, sustained protein O ‐GlcNAcylation contributes to cardiac adaptations, and its progression to pathophysiology. Methods and Results Using a naturally occurring dominant‐negative O ‐GlcNAcase (dnOGA) inducible cardiomyocyte‐specific overexpression transgenic mouse model, we induced dnOGA in 8‐ to 10‐week‐old mouse hearts. We examined the effects of 2‐week and 24‐week dnOGA overexpression, which progressed to a 1.8‐fold increase in protein O‐ GlcNAcylation. Two‐week increases in protein O ‐GlcNAc levels did not alter heart weight or function; however, 24‐week increases in protein O ‐GlcNAcylation led to cardiac hypertrophy, mitochondrial dysfunction, fibrosis, and diastolic dysfunction. Interestingly, systolic function was maintained in 24‐week dnOGA overexpression, despite several changes in gene expression associated with cardiovascular disease. Specifically, mRNA‐sequencing analysis revealed several gene signatures, including reduction of mitochondrial oxidative phosphorylation, fatty acid, and glucose metabolism pathways, and antioxidant response pathways after 24‐week dnOGA overexpression. Conclusions This study indicates that moderate increases in cardiomyocyte protein O ‐GlcNAcylation leads to a differential response with an initial reduction of metabolic pathways (2‐week), which leads to cardiac remodeling (24‐week). Moreover, the mouse model showed evidence of diastolic dysfunction consistent with a heart failure with preserved ejection fraction. These findings provide insight into the adaptive versus maladaptive responses to increased O‐ GlcNAcylation in heart.
    Type of Medium: Online Resource
    ISSN: 2047-9980
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 2653953-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 141, No. 13 ( 2020-03-31), p. 1080-1094
    Abstract: Myocardial infarction (MI) triggers myelopoiesis, resulting in heightened production of neutrophils. However, the mechanisms that sustain their production and recruitment to the injured heart are unclear. Methods: Using a mouse model of the permanent ligation of the left anterior descending artery and flow cytometry, we first characterized the temporal and spatial effects of MI on different myeloid cell types. We next performed global transcriptome analysis of different cardiac cell types within the infarct to identify the drivers of the acute inflammatory response and the underlying signaling pathways. Using a combination of genetic and pharmacological strategies, we identified the sequelae of events that led to MI-induced myelopoiesis. Cardiac function was assessed by echocardiography. The association of early indexes of neutrophilia with major adverse cardiovascular events was studied in a cohort of patients with acute MI. Results: Induction of MI results in rapid recruitment of neutrophils to the infarct, where they release specific alarmins, S100A8 and S100A9. These alarmins bind to the Toll-like receptor 4 and prime the nod-like receptor family pyrin domain-containing 3 inflammasome in naïve neutrophils and promote interleukin-1β secretion. The released interleukin-1β interacts with its receptor (interleukin 1 receptor type 1) on hematopoietic stem and progenitor cells in the bone marrow and stimulates granulopoiesis in a cell-autonomous manner. Genetic or pharmacological strategies aimed at disruption of S100A8/A9 and their downstream signaling cascade suppress MI-induced granulopoiesis and improve cardiac function. Furthermore, in patients with acute coronary syndrome, higher neutrophil count on admission and after revascularization correlates positively with major adverse cardiovascular disease outcomes. Conclusions: Our study provides novel evidence for the primary role of neutrophil-derived alarmins (S100A8/A9) in dictating the nature of the ensuing inflammatory response after myocardial injury. Therapeutic strategies aimed at disruption of S100A8/A9 signaling or their downstream mediators (eg, nod-like receptor family pyrin domain-containing 3 inflammasome, interleukin-1β) in neutrophils suppress granulopoiesis and may improve cardiac function in patients with acute coronary syndrome.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...