GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (20)
Material
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (20)
Language
Years
Subjects(RVK)
  • 1
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 118, No. 6 ( 2016-03-18), p. 970-983
    Abstract: The effectiveness of transplanted bone marrow mesenchymal stem cells (MSCs) for cardiac repair has been limited; thus, strategies for optimizing stem-cell–based myocardial therapy are needed. Objective: The present study was designed to test our central hypothesis that hypoxia-preconditioned MSCs (HP-MSCs) are more effective than MSCs cultured under ambient oxygen levels for the treatment of myocardial injury in a large-scale (N=49), long-term (9 months), nonhuman primate (Cynomolgous monkeys) investigation. Methods and Results: MSCs were engineered to express green fluorescent protein, cultured under ambient oxygen or 0.5% oxygen (HP-MSCs) for 24 hours and then tested in the infarcted hearts of Cynomolgus monkeys (1×10 7 cells per heart). Hypoxia preconditioning increased the expression of several prosurvival/proangiogenic factors in cultured MSCs, and measurements of infarct size and left-ventricular function at day 90 after myocardial infarction were significantly more improved in monkeys treated with HP-MSCs than in monkeys treated with the control vehicle; functional improvements in normal cultured bone marrow mesenchymal stem cells–treated monkeys were not significant. HP-MSCs transplantation was also associated with increases in cardiomyocyte proliferation, vascular density, myocardial glucose uptake, and engraftment of the transplanted cells and with declines in endogenous cell apoptosis, but did not increase the occurrence of arrhythmogenic complications. Conclusions: Hypoxia preconditioning improved the effectiveness of MSCs transplantation for the treatment of myocardial infarction in nonhuman primates without increasing the occurrence of arrhythmogenic complications, which suggests that future clinical trials of HP-MSCs transplantation are warranted.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2016
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2012
    In:  Circulation Research Vol. 110, No. 6 ( 2012-03-16), p. 818-830
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 110, No. 6 ( 2012-03-16), p. 818-830
    Abstract: Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well-established, the molecular events that inhibit or repress cardiac hypertrophy are less known. Objective: To identify and investigate novel regulators that modulate cardiac hypertrophy. Methods and Results: Here, we report the identification, characterization, and functional examination of a novel cardiac Isl1-interacting protein (CIP). CIP was identified from a bioinformatic search for novel cardiac-expressed genes in mouse embryonic hearts. CIP encodes a nuclear protein without recognizable motifs. Northern blotting, in situ hybridization, and reporter gene tracing demonstrated that CIP is highly expressed in cardiomyocytes of developing and adult hearts. Yeast two-hybrid screening identified Isl1, a LIM/homeodomain transcription factor essential for the specification of cardiac progenitor cells in the second heart field, as a cofactor of CIP. CIP directly interacted with Isl1, and we mapped the domains of these two proteins, which mediate their interaction. We show that CIP represses the transcriptional activity of Isl1 in the activation of the myocyte enhancer factor 2C. The expression of CIP was dramatically reduced in hypertrophic cardiomyocytes. Most importantly, overexpression of CIP repressed agonist-induced cardiomyocyte hypertrophy. Conclusions: Our studies therefore identify CIP as a novel regulator of cardiac hypertrophy.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2012
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 123, No. 6 ( 2011-02-15), p. 584-593
    Abstract: Omega-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) from fish oil ameliorate cardiovascular diseases. However, little is known about the effects of ω-3 polyunsaturated fatty acids on cardiac fibrosis, a major cause of diastolic dysfunction and heart failure. The present study assessed the effects of ω-3 polyunsaturated fatty acids on cardiac fibrosis. Methods and Results— We assessed left ventricular fibrosis and pathology in mice subjected to transverse aortic constriction after the consumption of a fish oil or a control diet. In control mice, 4 weeks of transverse aortic constriction induced significant cardiac dysfunction, cardiac fibrosis, and cardiac fibroblast activation (proliferation and transformation into myofibroblasts). Dietary supplementation with fish oil prevented transverse aortic constriction–induced cardiac dysfunction and cardiac fibrosis and blocked cardiac fibroblast activation. In heart tissue, transverse aortic constriction increased active transforming growth factor-β1 levels and phosphorylation of Smad2. In isolated adult mouse cardiac fibroblasts, transforming growth factor-β1 induced cardiac fibroblast transformation, proliferation, and collagen synthesis. Eicosapentaenoic acid and docosahexaenoic acid increased cyclic GMP levels and blocked cardiac fibroblast transformation, proliferation, and collagen synthesis. Eicosapentaenoic acid and docosahexaenoic acid blocked phospho-Smad2/3 nuclear translocation. DT3, a protein kinase G inhibitor, blocked the antifibrotic effects of eicosapentaenoic acid and docosahexaenoic acid. Eicosapentaenoic acid and docosahexaenoic acid increased phosphorylated endothelial nitric oxide synthase and endothelial nitric oxide synthase protein levels and nitric oxide production. Conclusion— Omega-3 fatty acids prevent cardiac fibrosis and cardiac dysfunction by blocking transforming growth factor-β1–induced phospho-Smad2/3 nuclear translocation through activation of the cyclic GMP/protein kinase G pathway in cardiac fibroblasts.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2011
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 122, No. 7 ( 2018-03-30), p. 958-969
    Abstract: Human pluripotent stem cell–derived cardiovascular progenitor cells (hPSC-CVPCs) should be thoroughly investigated in large animal studies before testing in clinical trials. Objective: The main of this study is to clarify whether hPSC-CVPCs can engraft for long time in the heart of primates after myocardial infarction (MI) and compare the effectiveness and safety of immunosuppression with cyclosporine alone or multiple-drug regimen (MDR) containing cyclosporine, methylprednisolone, and basiliximab in cynomolgus monkeys that had received intramyocardial injections of 1×10 7 EGFP (enhanced green fluorescent protein)-expressing hPSC-CVPCs after MI. A third group of animals received the immunosuppression MDR but without cell therapy after MI (MI+MDR group). Methods and Results: Measurements of EGFP gene levels and EGFP immunofluorescence staining indicated that the hPSC-CVPC engraftment rate was greater in the MI+MDR+CVPC group than that in the MI+cyclosporine+CVPC group. However, even in the MI+MDR+CVPC group, no transplanted cells could be detected at 140 days after transplantation. Concomitantly, immunofluorescent analysis of CD3, CD4, and CD8 expression indicated that T-lymphocyte infiltration in the CVPC-transplanted hearts was less in the MDR-treated animals than in the cyclosporine-alone–treated animals. The recovery of left ventricular function on day 28 post-MI in the MI+MDR+CVPC group was better than that in the MI+MDR group. Apoptotic cardiac cells were also less common in the MI+MDR+CVPC group than in the MI+MDR group, although both immunosuppression regimens were associated with transient hepatic dysfunction. Conclusions: This is the largest study of hPSCs in nonhuman primates in cardiovascular field to date (n=32). Compared with cyclosporine alone, MDR attenuates immune rejection and improves survival of hPSC-CVPCs in primates; this is associated with less apoptosis of native cardiac cells and better recovery of left ventricular function at 28 days. However, even with MDR, transplanted hPSC-CVPCs do not engraft and do not survive at 140 days after transplantation, thereby excluding remuscularization as a mechanism for the functional effect.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 130, No. 17 ( 2014-10-21), p. 1452-1465
    Abstract: Long noncoding RNAs (lncRNAs) have recently been implicated in many biological processes and diseases. Atherosclerosis is a major risk factor for cardiovascular disease. However, the functional role of lncRNAs in atherosclerosis is largely unknown. Methods and Results— We identified lincRNA-p21 as a key regulator of cell proliferation and apoptosis during atherosclerosis. The expression of lincRNA-p21 was dramatically downregulated in atherosclerotic plaques of ApoE −/− mice, an animal model for atherosclerosis. Through loss- and gain-of-function approaches, we showed that lincRNA-p21 represses cell proliferation and induces apoptosis in vascular smooth muscle cells and mouse mononuclear macrophage cells in vitro. Moreover, we found that inhibition of lincRNA-p21 results in neointimal hyperplasia in vivo in a carotid artery injury model. Genome-wide analysis revealed that lincRNA-p21 inhibition dysregulated many p53 targets. Furthermore, lincRNA-p21, a transcriptional target of p53, feeds back to enhance p53 transcriptional activity, at least in part, via binding to mouse double minute 2 (MDM2), an E3 ubiquitin-protein ligase. The association of lincRNA-p21 and MDM2 releases MDM2 repression of p53, enabling p53 to interact with p300 and to bind to the promoters/enhancers of its target genes. Finally, we show that lincRNA-p21 expression is decreased in patients with coronary artery disease. Conclusions— Our studies identify lincRNA-p21 as a novel regulator of cell proliferation and apoptosis and suggest that this lncRNA could serve as a therapeutic target to treat atherosclerosis and related cardiovascular disorders.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2014
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 127, No. 4 ( 2020-07-31), p. 486-501
    Abstract: Maintaining iron homeostasis is essential for proper cardiac function. Both iron deficiency and iron overload are associated with cardiomyopathy and heart failure via complex mechanisms. Although ferritin plays a central role in iron metabolism by storing excess cellular iron, the molecular function of ferritin in cardiomyocytes remains unknown. Objective: To characterize the functional role of Fth (ferritin H) in mediating cardiac iron homeostasis and heart disease. Methods and Results: Mice expressing a conditional Fth knockout allele were crossed with 2 distinct Cre recombinase-expressing mouse lines, resulting in offspring that lack Fth expression specifically in myocytes (MCK-Cre) or cardiomyocytes (Myh6-Cre). Mice lacking Fth in cardiomyocytes had decreased cardiac iron levels and increased oxidative stress, resulting in mild cardiac injury upon aging. However, feeding these mice a high-iron diet caused severe cardiac injury and hypertrophic cardiomyopathy, with molecular features typical of ferroptosis, including reduced glutathione (GSH) levels and increased lipid peroxidation. Ferrostatin-1, a specific inhibitor of ferroptosis, rescued this phenotype, supporting the notion that ferroptosis plays a pathophysiological role in the heart. Finally, we found that Fth-deficient cardiomyocytes have reduced expression of the ferroptosis regulator Slc7a11, and overexpressing Slc7a11 selectively in cardiomyocytes increased GSH levels and prevented cardiac ferroptosis. Conclusions: Our findings provide compelling evidence that ferritin plays a major role in protecting against cardiac ferroptosis and subsequent heart failure, thereby providing a possible new therapeutic target for patients at risk of developing cardiomyopathy.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 131, No. 3 ( 2022-07-22), p. 189-206
    Abstract: Cardiac fibrosis is a common pathological feature associated with adverse clinical outcome in postinjury remodeling and has no effective therapy. Using an unbiased transcriptome analysis, we identified FMO2 (flavin-containing monooxygenase 2) as a top-ranked gene dynamically expressed following myocardial infarction (MI) in hearts across different species including rodents, nonhuman primates, and human. However, the functional role of FMO2 in cardiac remodeling is largely unknown. Methods: Single-nuclei transcriptome analysis was performed to identify FMO2 after MI; FMO2 ablation rats were generated both in genetic level using the CRISPR-cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat–associated 9) technology and lentivirus-mediated manner. Gain-of-function experiments were conducted using postn -promoter FMO2, miR1a/miR133a-FMO2 lentivirus, and enzymatic activity mutant FMO2 lentivirus after MI. Results: A significant downregulation of FMO2 was consistently observed in hearts after MI in rodents, nonhuman primates, and patients. Single-nuclei transcriptome analysis showed cardiac expression of FMO2 was enriched in fibroblasts rather than myocytes. Elevated spontaneous tissue fibrosis was observed in the FMO2-null animals without external stress. In contrast, fibroblast-specific expression of FMO2 markedly reduced cardiac fibrosis following MI in rodents and nonhuman primates associated with diminished SMAD2/3 (small mothers against decapentaplegic 2/3) phosphorylation. Unexpectedly, the FMO2-mediated regulation in fibrosis and SMAD2/3 signaling was independent of its enzymatic activity. Rather, FMO2 was detected to interact with CYP2J3 (cytochrome p450 superfamily 2J3). Binding of FMO2 to CYP2J3 disrupted CYP2J3 interaction with SMURF2 (SMAD-specific E3 ubiquitin ligase 2) in cytosol, leading to increased cytoplasm to nuclear translocation of SMURF2 and consequent inhibition of SMAD2/3 signaling. Conclusions: Loss of FMO2 is a conserved molecular signature in postinjury hearts. FMO2 possesses a previously uncharacterized enzyme-independent antifibrosis activity via the CYP2J3-SMURF2 axis. Restoring FMO2 expression exerts potent ameliorative effect against fibrotic remodeling in postinjury hearts from rodents to nonhuman primates. Therefore, FMO2 is a potential therapeutic target for treating cardiac fibrosis following injury.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 115, No. suppl_1 ( 2014-07-18)
    Abstract: Background: Yes-Associated Protein (YAP), the terminal effector of the Hippo signaling pathway, is crucial for regulating embryonic cardiomyocyte proliferation. We hypothesized that YAP activation after myocardial infarction would preserve cardiac function and improve survival. Methods and Results: In this study, we used a cardiac-specific, inducible expression system to activate YAP in adult mouse heart. Activation of YAP in adult heart promoted cardiomyocyte proliferation and did not deleteriously affect heart function. Furthermore, YAP activation after myocardial infarction (MI) preserved heart function and reduced infarct size. Using adeno-associated virus subtype 9 (AAV9) as a delivery vector, we expressed human YAP in the adult murine myocardium immediately after MI. We found that AAV9:hYAP significantly improved cardiac function and mouse survival. AAV9:hYAP did not exert its salutary effects by reducing cardiomyocyte apoptosis. Rather, AAV9:hYAP stimulated adult cardiomyocyte proliferation. Gene expression profiling indicated that AAV9:hYAP stimulated cell cycle gene expression, activated of components of the inflammatory response, and promoted a less mature cardiac gene expression signature. Conclusions: Cardiac specific YAP activation after MI mitigated myocardial injury, improved cardiac function, and enhanced survival. These findings suggest that therapeutic activation of YAP or its downstream targets, potentially through AAV-mediated gene therapy, may be a strategy to improve outcome after MI.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2014
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 116, No. 1 ( 2015-01-02), p. 35-45
    Abstract: Yes-associated protein (YAP), the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEA (transcriptional enhancer activator)-domain sequence–specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined. Objective: To identify direct YAP targets that mediate its mitogenic and antiapoptotic effects in the heart. Methods and Results: We identified direct YAP targets by combining differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP-bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb , encoding p110β, a catalytic subunit of phosphoinositol-3-kinase, as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. YAP and TEA-domain occupied a conserved enhancer within the first intron of Pik3cb , and this enhancer drove YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the phosphoinositol-3-kinase-Akt pathway. Like Yap , Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened YAP mitogenic activity. Reciprocally, impaired heart function in Yap loss-of-function was significantly rescued by adeno-associated virus–mediated Pik3cb expression. Conclusions: Pik3cb is a crucial direct target of YAP, through which the YAP activates phosphoinositol-3-kinase-AKT pathway and regulates cardiomyocyte proliferation and survival.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2014
    In:  Circulation Research Vol. 115, No. suppl_1 ( 2014-07-18)
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 115, No. suppl_1 ( 2014-07-18)
    Abstract: Cardiac hypertrophy is one of the primary responses of the heart to pathophysiological stress. However, the mechanism of the transition from compensative hypertrophic growth to cardiac dilation is poor understood. Recently, we identified a cardiac-specific expressed gene CIP. The expression of CIP is unchanged in hypertrophic heart but significantly down-regulated in dilated hearts, suggesting CIP may play an important role in the transition from cardiac hypertrophy to dilated cardiomyopathy. We generated CIP knockout mice and found that CIP is dispensable for cardiac development. Interestingly, CIP-null mutant mice developed severe cardiac dilation 4 weeks after TAC (transverse aortic constriction) surgery, while control mice were still at the stage of compensative hypertrophic growth. Echocardiography and histological examinations showed that mutant hearts had enlarged chamber with thinner ventricle wall and decreased cardiac performance compared to controls. The expression of marker genes of cardiac disease, BNP and Myh7, was elevated. Consistently, deletion of CIP in Myh6-CnA transgenic mice result in premature death, displaying severe left ventricle dilation. Conversely, cardiac-specific CIP overexpression inhibited pressure overload-induced cardiac hypertrophy. CIP transgenic mice exhibit decreased ventricle weight/body weight ratio, decreased cardiomyocyte cross-section area and repressed expression of hypertrophic related marker genes. CIP overexpression also protected the heart from developing cardiac dilation and preserved the cardiac function after prolonged pressure overload. We performed unbiased microarray assay to document the transcriptome in CIP knockout and control mice which were subjected to pressure overload (TAC). The analysis of Gene Ontology term indicated the Negative Regulation of Apoptosis was down-regulated while the Collagen/Extracellular Structure Organization was up-regulated in CIP-null hearts under TAC condition. In summary, our studies established CIP as a key regulator of the transition from cardiac hypertrophy to dilated cardiomyopathy. The protective effect of CIP in cardiac remodeling indicates that CIP could become a therapeutic target for cardiac diseases.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2014
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...