GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :American Geophysical Union,
    Keywords: Underwater acoustics. ; Seismic waves. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (283 pages)
    Edition: 1st ed.
    ISBN: 9781119750901
    Series Statement: Geophysical Monograph Series ; v.284
    DDC: 551.4654
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 An Introduction to the Ocean Soundscape -- 1.1 Introduction -- 1.2 Seismic Waves -- 1.2.1 Body Waves -- 1.2.2 Surface Waves -- 1.3 Noise Sources in the Oceans -- 1.3.1 Noise from Geological Origins (Geophony) -- 1.3.2 Noise from Biological Origins (Biophony) -- 1.3.3 Noise from Anthropogenic Origins (Anthrophony) -- 1.4 Tools for Recording Marine Noise -- 1.4.1 Ocean-Bottom Seismometers -- 1.4.2 Ocean-Bottom Nodes -- 1.4.3 Ocean-Bottom Observatories -- 1.4.4 Acoustic Doppler Current Profilers -- 1.4.5 Echosounders -- 1.4.6 Drifters and Floats -- 1.5 Common Data-Processing Methods -- 1.5.1 Time-Drift Correction -- 1.5.2 Data Reduction -- 1.5.3 Instrument Relocation through Travel-Time Analysis -- 1.5.4 Rotation for Geophone Reorientation -- 1.5.5 Converting from Counts to Physical Units -- 1.5.6 Removing the Mean from the Data Set -- 1.5.7 Frequency Spectrum, Spectrogram, and Power Spectral Density -- 1.5.8 Frequency Filtering -- 1.5.9 Polarization Analysis -- 1.6 Summary of Chapters -- 1.7 Future Developments of Acoustic Measurements in the Ocean -- References -- Chapter 2 Seismic Ambient Noise: Application to Taiwanese Data -- 2.1 Introduction -- 2.2 Background Ambient Seismic Noise in Taiwan -- 2.3 Ambient Seismic Noise Generated by Intense Storms -- 2.4 Deepsea Internal Waves Southeast of Offshore Taiwan -- 2.5 Gas Emissions at the Seafloor and "Bubble" SDEs in SW Offshore Taiwan -- 2.6 Conclusion -- Acknowledgments -- References -- Chapter 3 Seasonal and Geographical Variations in the Quantified Relationship Between Significant Wave Heights and Microseisms: An Example From Taiwan -- 3.1 Introduction -- 3.2 Method and Data Processing -- 3.2.1 Data -- 3.2.2 Method -- 3.3 Testing and Determining Parameters -- 3.4 Results and Discussion. , 3.4.1 Seasonal Variation -- 3.4.2 Geographical Variation -- 3.4.3 Residual Distributions of the SHW Simulation -- 3.5 Conclusions -- Acknowledgments -- References -- Chapter 4 Listening for Diverse Signals From Emergent and Submarine Volcanoes -- 4.1 Introduction -- 4.2 Detection and Monitoring of Submarine Volcanism -- 4.2.1 Hydroacoustic Arrays -- 4.2.2 Seismometer Arrays -- 4.2.3 Cabled Systems -- 4.2.4 Limitations in Detecting Submarine Volcanism -- 4.3 Diverse Volcano Signals Recorded Underwater -- 4.3.1 Distinguishing Signal from Noise in the Ocean -- 4.3.2 High-Frequency Volcanic Signals -- 4.3.3 Low-Frequency Volcanic Signals -- 4.3.4 Volcanic Tremor Signals -- 4.3.5 Volcanic Explosion-Type Signals -- 4.3.6 Volcanic Landslide Signals -- 4.4 Conclusions -- Availability Statement -- Acknowledgments -- References -- Chapter 5 Seismic and Acoustic Monitoring of Submarine Landslides: Ongoing Challenges, Recent Successes, and Future Opportunities -- 5.1 Introduction -- 5.1.1 Recent Advances in Direct Monitoring of Submarine Landslides -- 5.1.2 Aims -- 5.2 Passive Geophysical Monitoring of Terrestrial Landslides -- 5.3 Which Aspects of Submarine Landslides Should We Be Able to Detect with Passive Systems? -- 5.4 Recent Advances and Opportunities in Passive Monitoring of Submarine Landslides -- 5.4.1 Determining the Timing and Location of Submarine Landslides at a Margin Scale Using Land-Based Seismological Networks -- 5.4.2 Quantifying Landslide Kinematics Using Hydrophones -- 5.4.3 Characterizing Landslide Run-Out to Enhance Hazard Assessments -- 5.4.4 Opportunities Using Distributed Cable-Based Sensing -- 5.5 The Application of Passive Geophysical Monitoring in Advancing Submarine Landslide Science. , 5.5.1 Can Passive Seismic and Acoustic Techniques Overcome the Logistical Challenges That Have Previously Hindered the Monitoring of Submarine Landslides? -- 5.5.2 What Aspects of Submarine Landslides Can We Assess from Passive Remote Sensing Techniques, and What Needs To Be Resolved? -- 5.5.3 Suggestions for Future Directions -- 5.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Iceberg Noise -- 6.1 Introduction -- 6.2 Waveforms of Iceberg Noise -- 6.2.1 Iceberg Bursts -- 6.2.2 Iceberg Tremor -- 6.2.3 Iceberg Harmonic Tremor -- 6.3 Observation and Location of Iceberg Noise -- 6.3.1 Hydroacoustic Records at Long Distances -- 6.3.2 Records of Regional Hydroacoustic Networks -- 6.3.3 Seismic Records in Antarctica -- 6.4 Spatial and Temporal Variations of Iceberg Noise -- 6.5 Source Mechanisms of Iceberg Noise -- 6.6 Discussion -- 6.7 Conclusion -- Acknowledgments -- References -- Chapter 7 The Sound of Hydrothermal Vents -- 7.1 Introduction -- 7.2 Theory of Sound Production by Hydrothermal Vents -- 7.2.1 Radiation Efficiency -- 7.2.2 Monopole -- 7.2.3 Dipole -- 7.2.4 Quadrupole -- 7.2.5 Estimated Source Sound Pressure Levels -- 7.2.6 Estimated Source Spectra -- 7.3 Survey of Acoustic Measurements -- 7.3.1 Very Low Frequency (< -- 10 Hz) -- 7.3.2 Narrowband -- 7.3.3 Broadband -- 7.3.4 Tidal Variability -- 7.3.5 Summary of Acoustic Measurements -- 7.4 Other Sources of Ambient Noise -- 7.4.1 Microseisms -- 7.4.2 Local and Teleseismic Events -- 7.4.3 Biological Sources -- 7.4.4 Anthropogenic Sources -- 7.5 Measurement and Analysis Considerations -- 7.5.1 Flow Noise and Coupled Vibration -- 7.5.2 Sound Speed in Hydrothermal Fluid -- 7.5.3 Near Field vs Far Field -- 7.5.4 Hydrophone Array Measurements -- 7.6 Conclusion -- Nomenclature -- References -- Chapter 8 Atypical Signals: Characteristics and Sources of Short-Duration Events. , 8.1 Introduction -- 8.2 Signal Characteristics -- 8.3 Worldwide Distribution of SDEs -- 8.4 Observations and Studies Advancing SDE Understanding -- 8.4.1 Observations from Different Types of Ocean Bottom Instruments -- 8.4.2 Continuous Long-Term, Multidisciplinary Monitoring of Gas Emissions -- 8.4.3 Correlation with Acoustic Monitoring of Gas Emissions -- 8.4.4 Correlation with Earthquakes -- 8.4.5 Correlation with Tides -- 8.4.6 Controlled in situ and Laboratory Experiments -- 8.5 Discussion of SDE Potential Sources -- 8.5.1 Biological Origin -- 8.5.2 Action of Ocean/Sea Currents -- 8.5.3 Fluids in Near-Surface Sediments -- 8.5.4 Low-Magnitude Seismicity -- 8.5.5 Source Modeling -- 8.6 Conclusion -- Acknowledgments -- References -- Chapter 9 Short-Duration Events Associated With Active Seabed Methane Venting: Scanner Pockmark, North Sea -- 9.1 Introduction -- 9.2 Scanner Pockmark Complex -- 9.3 CHIMNEY Seismic Experiment -- 9.4 Methods -- 9.5 Results -- 9.6 Discussion -- 9.6.1 Characteristics of SDEs -- 9.6.2 Spatial Distribution of SDEs -- 9.6.3 Negative Correlation with the Tide -- 9.6.4 Efficiency of SDE Detection -- 9.7 Conclusion -- Acknowledgments -- References -- Chapter 10 Ambient Bubble Acoustics: Seep, Rain, and Wave Noise -- 10.1 Introduction -- 10.2 Bubbles as Acoustic Sources -- 10.2.1 The Injection of a Gas Bubble -- 10.2.2 Bubbles as Simple Harmonic Oscillators -- 10.2.3 Minnaert Frequency -- 10.3 Subsurface Gas Release -- 10.3.1 Gas-Seep Acoustics -- 10.4 Rainfall Acoustics -- 10.5 Acoustics of Breaking Waves -- 10.6 Conclusion -- Further Reading -- Appendix -- Symbology -- References -- Chapter 11 Baleen Whale Vocalizations -- 11.1 Introduction -- 11.1.1 Marine Mammal Classification -- 11.2 Physical Description of Sound and Its Conventions -- 11.2.1 Sound Pressure Level (SPL) -- 11.2.2 Source Level (SL). , 11.2.3 Whale-Sound Analysis -- 11.3 Marine Mammal Vocalizations -- 11.3.1 Sirenia and Carnivora -- 11.3.2 Toothed Whales -- 11.3.3 Baleen Whales -- 11.4 Conclusions -- Acknowledgments -- References -- Chapter 12 Tracking and Monitoring Fin Whales Offshore Northwest Spain Using Passive Acoustic Methods -- 12.1 Introduction -- 12.1.1 Passive Acoustic Monitoring -- 12.1.2 Fin Whale Vocalizations -- 12.1.3 Data Available for This Study -- 12.2 Methods -- 12.2.1 Call Detection -- 12.2.2 Delay Estimation -- 12.2.3 Localization and Tracking -- 12.2.4 Kalman Filter -- 12.3 Results -- 12.3.1 Detections -- 12.3.2 Localization -- 12.3.3 Tracking -- 12.4 Discussion -- 12.5 Conclusions -- Acknowledgments -- References -- Chapter 13 Noise From Marine Traffic -- 13.1 Introduction -- 13.2 Underwater Radiated Noise -- 13.2.1 Sources of Shipping Noise -- 13.2.2 Measuring Radiated Noise -- 13.2.3 Modeling Underwater Radiated Noise -- 13.3 Noise Mapping -- 13.3.1 Modeling Shipping Contributions -- 13.3.2 Source Properties -- 13.3.3 Acoustic Propagation -- 13.3.4 Noise-Mapping Applications -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Tracking Multiple Underwater Vessels With Passive Sonar Using Beamforming and a Trajectory PHD Filter -- 14.1 Introduction -- 14.2 Narrow-Band Signal Model -- 14.3 Detection via Beamforming and CA-CFAR -- 14.3.1 CBF -- 14.3.2 CA-CFAR -- 14.4 Trajectory PHD Filter for Multiple Underwater Vessels -- 14.4.1 System Model -- 14.4.2 TPHD Filter -- 14.5 Experiments -- 14.5.1 Testing Using Numerical Simulations -- 14.5.2 Testing Using Real-World Experimental Data -- 14.6 Conclusions -- References -- Chapter 15 Deciphering the Submarine Soundscape: New Insights, Broader Implications, Future Directions -- 15.1 Introduction -- 15.2 What WAS Not Included -- 15.3 Further Information -- 15.4 Broader Context. , 15.5 Future Impact and Implications.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...