GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    New York, NY :Springer New York,
    Keywords: Auditory perception. ; Electronic books.
    Description / Table of Contents: The recent resumption of studies that test the neural correlates of auditory cognition now emphasize the use of awake, behaving animals as model. This book collects a number of key recent additions to this exciting and highly applicable body of literature.
    Type of Medium: Online Resource
    Pages: 1 online resource (335 pages)
    Edition: 1st ed.
    ISBN: 9781461423508
    Series Statement: Springer Handbook of Auditory Research Series ; v.45
    DDC: 612.8255
    Language: English
    Note: Intro -- Neural Correlates of Auditory Cognition -- Series Preface -- Volume Preface -- Contents -- Contributors -- Chapter 1: Auditory Cognition: The Integration of Psychophysics with Neurophysiology -- 1.1 Introduction -- 1.2 Overview of Chapters in the Volume -- 1.3 Conclusion and Future Work -- References -- Chapter 2: Processing Streams in Auditory Cortex -- 2.1 Hierarchical Processing of Communication Sounds in the Auditory Ventral Stream -- 2.1.1 Auditory Communication as a Pattern Recognition Problem -- 2.1.2 Early Parallel Processing in Auditory Cortex -- 2.1.3 Processing of Sounds with Intermediate Complexity in the Auditory Belt -- 2.1.3.1 Selectivity for BP Noise -- 2.1.3.2 Selectivity for Frequency-Modulated Sweeps -- 2.1.4 Selectivity for Species-Speci c Calls -- 2.1.4.1 Nonlinear Integration Mechanisms -- 2.1.4.2 MC and Spatial Selectivity -- 2.1.5 Auditory Belt Projections to Prefrontal Cortex -- 2.1.6 Human Imaging Studies -- 2.1.7 Summary -- 2.2 Processing of Space and Motion in the Auditory Dorsal Stream -- 2.2.1 Brain Stem Processing of Auditory Space -- 2.2.2 Spatial Selectivity in Primary and Nonprimary Auditory Cortex -- 2.2.3 Spatial and Pattern Selectivity in the Lateral Belt -- 2.2.4 Caudal Belt Projections to Parietal and Prefrontal Cortex -- 2.2.5 Human Imaging Studies of the Auditory Dorsal Stream -- 2.2.6 Summary -- 2.3 Sensorimotor Integration and Control in the Dorsal Stream -- 2.3.1 Introduction -- 2.3.2 Role of the Human Dorsal Auditory Pathway in Speech and Language -- 2.3.2.1 Is the Dorsal Pathway Really Involved in Speech Processing? -- 2.3.2.2 Representation of Action Sounds in the Dorsal Stream -- 2.3.2.3 A Multisensory Reference Frame -- 2.3.2.4 Encoding and Retrieval of Sound Sequences -- 2.3.2.5 Auditory Perception/Production Links in Voice and Speech. , 2.3.3 Uni ed Function of the Dorsal Stream: Anticipatory Control of Sensorimotor Events -- 2.4 Summary -- References -- Chapter 3: Task-Related Activation of Auditory Cortex -- 3.1 Introduction -- 3.2 Meaning of Natural Sounds in Environments and in Tasks -- 3.3 Auditory Task Structure for Animals -- 3.3.1 Pavlovian Conditioning -- 3.3.2 Operant (Instrumental) Conditioning -- 3.4 Task-Related Modulations of Neuronal Responses in Auditory Cortex -- 3.5 Task-Related Changes of Receptive Fields -- 3.6 Learning-Induced Changes of Auditory Responses -- 3.6.1 Tone Detection and Discrimination Tasks -- 3.6.2 Learning-Induced Changes of Auditory Responses in Categorization Tasks -- 3.7 Neuronal Responses to Self-Generated Sounds -- 3.8 Neuronal Firing Related to Nonauditory Events -- 3.8.1 Neuronal Responses to Nonauditory Stimuli -- 3.8.2 Neuronal Activity Between Elements of an Auditory Task -- 3.9 Summary -- References -- Chapter 4: The Role of Auditory Cortex in Spatial Processing -- 4.1 Introduction -- 4.2 Auditory Spatial Localization Cues -- 4.2.1 Plasticity of Spatial Cues During Development -- 4.3 Sound Localization Ability as Measured by Psychophysical Performance -- 4.3.1 Effects of Stimulus Spectrum -- 4.3.2 Effects of Stimulus Intensity -- 4.4 Effect of Auditory Cortical Lesions on Sound Localization Performance -- 4.5 Plasticity of Sound Localization Processing -- 4.5.1 Plasticity in Localization in Elevation -- 4.5.2 Plasticity in Localization in Azimuth -- 4.5.3 Role of Auditory Cortex in Sound Localization Plasticity -- 4.5.3.1 A1 and Plasticity After Monaural Plugging -- 4.5.3.2 A1 and Plasticity After Environmental Enrichment -- 4.6 Functional Properties of Auditory Cortical Neurons -- 4.6.1 A Spatial Processing Stream in Auditory Cortex -- 4.7 Auditory Cortical Representations of Acoustic Space. , 4.7.1 Cortical Representations as a Function of Stimulus Spectrum -- 4.7.2 Cortical Responses as a Function of Stimulus Intensity -- 4.7.3 Potential Population Encoding Models -- 4.7.3.1 Population Coding Based on Topography -- 4.7.3.2 Population Coding Based on Neuronal Probabilities -- 4.7.3.3 Acoustic Space Coding Based on Population Vectors -- 4.7.3.4 Acoustic Space Coding Based on Maximum Likelihood Estimation -- 4.7.3.5 Acoustic Space Coding Not Based on Firing Rate -- 4.7.4 Effects of Natural Aging on Sound Localization and Cortical Spatial Processing -- 4.8 Summary and Conclusions -- References -- Chapter 5: Neural Correlates of Auditory Object Perception -- 5.1 What Are Auditory Objects? -- 5.2 Physical Acoustics of Auditory Objects -- 5.2.1 Acoustic Fingerprints of Sound Sources -- 5.2.2 Vocalizations as a Special Case of "Objects" -- 5.3 Perception of Auditory Objects -- 5.3.1 "What Type of Object?" Invariance in Categorical Perception -- 5.3.2 "How Many Objects?" Auditory Stream Segregation -- 5.3.3 Taking a Pragmatic Approach -- 5.4 Neural Processing of Auditory Objects -- 5.4.1 Neural Correlates of Gestalt Grouping by Common Onset -- 5.4.2 Neural Correlates of Stream Segregation -- 5.4.3 Auditory Object Representations in Primary Cortical Areas -- 5.4.4 Higher-Order Auditory Cortex: An Auditory "What" Stream? -- 5.4.5 Are Auditory Objects Represented by Network States? -- 5.4.6 Objects in the Context of Action and Learning -- 5.5 Concluding Remarks -- References -- Chapter 6: Phonemic Representations and Categories -- 6.1 Introduction -- 6.1.1 Terminology -- 6.2 Phonemic Representation within the Auditory System: General Principles -- 6.2.1 Utility of Animal Models -- 6.2.2 Subcortical Physiology -- 6.2.3 Cortical Neural Networks -- 6.2.4 Hemispheric Asymmetries -- 6.2.5 Temporal Processing -- 6.3 Phonemic Representation Within A1. , 6.3.1 Tonotopic Organization -- 6.3.2 Multidimensional Representation -- 6.3.3 Temporal Processing -- 6.3.3.1 Windows of Integration -- 6.3.3.2 Temporal Envelope Processing -- 6.3.4 Context Dependence -- 6.3.5 Relationship Between Physiology and Perception -- 6.4 Phonemic Representation and Categorization in Non-A1 -- 6.4.1 General Principles -- 6.4.2 Posterior-Lateral Superior Temporal Gyrus -- 6.4.3 Planum Temporale -- 6.4.4 Superior Temporal Sulcus -- 6.4.5 Supramarginal Gyrus -- 6.4.6 Ventral Prefrontal Cortex -- 6.5 Conclusions -- 6.5.1 Serial Processing versus a Bidirectional and Interactive Neural Network -- 6.5.2 Future Directions -- References -- Chapter 7: The Influence of Vision on Auditory Communication in Primates -- 7.1 Introduction: The Structure of Primate Communication Signals -- 7.2 Perceptual Responses of Primates to Vocal Communication Signals -- 7.2.1 Temporal Cues in Vocal Recognition -- 7.2.2 Multisensory Matching of Faces and Voices -- 7.2.3 Eye Movement Strategies -- 7.2.4 Behavioral Integration of Faces and Voices -- 7.3 Neocortical Processing of Face/Voice Signals in Monkeys -- 7.3.1 The Auditory Cortical Node in Audiovisual Communication -- 7.3.2 The Superior Temporal Sulcus Is a Source for Visual Modulation of Auditory Cortical Activity -- 7.4 Mechanism for Visual Modulation of Auditory Cortical Signals: Phase Resetting -- 7.5 Conclusions -- References -- Chapter 8: Neurophysiology of Attention and Memory Processing -- 8.1 Introduction -- 8.2 Neural Correlates of Auditory Attention -- 8.2.1 The Role of Primary Auditory Cortex in Unimodal Attention Tasks -- 8.2.2 Primary AC and Attention Across Multiple Sensory Modalities -- 8.2.3 Areas Outside of Primary AC and Auditory Attention -- 8.2.4 Attentional Processing Mechanisms -- 8.2.5 Future Questions Regarding Auditory Attention and Neural Activity -- 8.3 Auditory Memory. , 8.3.1 Stimulus-Speci c Adaptation -- 8.3.2 Working Memory -- 8.3.2.1 Neural Correlates of Auditory Working Memory in PFC -- 8.3.2.2 Neural Correlates of Auditory WM in the STG and Parietal Lobe -- 8.3.2.3 Neural Correlates of Auditory WM in the AC -- 8.3.3 Plasticity and Long-Term Retention -- 8.3.4 Future Questions Pertaining to Auditory Memory -- 8.4 Overall Summary for Neural Correlates of Auditory Attention and Memory -- References -- Chapter 9: Attention and Dynamic, Task-Related Receptive Field Plasticity in Adult Auditory Cortex -- 9.1 Introduction -- 9.1.1 Rapid Plasticity Customizes Contrast Filters to Enable Separation of Foreground from Background -- 9.2 Rapid Bottom-Up Adaptation -- 9.2.1 Adaptive Coding of Stimulus Statistics -- 9.2.2 Stimulus-Speci c Adaptation: Novelty Responses -- 9.2.3 Role of Bottom-Up Adaptation -- 9.3 Dynamic Plasticity of RFs During Attention-Driven Behavior -- 9.3.1 Time Resolution for Analysis of Dynamic RF Properties of Neurons in A1 During Behavior -- 9.3.2 Task-Related Plasticity in A1: Measuring Changes in Spectrotemporal RFs -- 9.3.3 Dynamic Changes in Spectral Tuning in a Sea of STRF Stability -- 9.3.4 Bidirectional Plasticity (Both Enhancement and Suppression) -- 9.3.5 Plasticity During Detection of Tone-in-Noise -- 9.3.6 Unique, Persistent Plasticity 'Contrast Filter' Signatures for Each Combination of Task and Stimuli -- 9.3.6.1 Persistence of RFP Changes After Spectral Tasks -- 9.3.7 Importance of Task Valence in Shaping RFP -- 9.3.8 Temporal Tasks and Plasticity in the Temporal Dimension of the STRF -- 9.3.9 Summary of Variables Contributing to RFP -- 9.3.10 Task-Related Plasticity in A1 Emerges from a Larger Attention-Driven Plasticity Circuit -- 9.3.11 Attention and Task-Related Responses in FC -- 9.3.11.1 Speci c Changes in Brain Oscillations May In uence RFP. , 9.4 Learning-Induced Plasticity in Sound Localization and Auditory Spatial Learning.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    New York, NY :Springer New York,
    Keywords: Echolocation (Physiology). ; Electronic books.
    Description / Table of Contents: This book offers a conceptual overview of what is known about biosonar in bats and odontocetes. Written by bat and odontocetes experts, it provides a unique insight that will help improve our understanding of biosonar in both animal groups.
    Type of Medium: Online Resource
    Pages: 1 online resource (312 pages)
    Edition: 1st ed.
    ISBN: 9781461491460
    Series Statement: Springer Handbook of Auditory Research Series ; v.51
    DDC: 599.4
    Language: English
    Note: Intro -- Series Preface -- Preface 1992 -- Volume Preface -- Contents -- Contributors -- Chapter 1: Biosonar of Bats and Toothed Whales: An Overview -- 1.1 Why Bats and Toothed Whales Together? -- 1.2 An Overview of the Volume -- 1.3 Volume Dedication -- 1.4 Conclusions -- References -- Chapter 2: Sonar Signals of Bats and Toothed Whales -- 2.1 Introduction -- 2.2 Signal Production -- 2.2.1 Bats -- 2.2.2 Toothed Whales -- 2.3 Echoreception -- 2.3.1 Bats -- 2.3.2 Toothed Whales -- 2.4 Acoustic Structure of Echolocation Signals from Bats and Toothed Whales -- 2.4.1 Design of Sonar Signals -- 2.4.2 Contributions from the Laboratory and the Field -- 2.4.3 Echolocation Signals of Bats -- 2.4.4 Echolocation Signals of Toothed Whales -- 2.5 Patterns of Call Production -- 2.5.1 Duty Cycle -- 2.5.2 Feeding Buzzes -- 2.5.3 Adaptive Changes in Signal Structure -- 2.5.4 Time-Varying Gain Control -- 2.6 Challenges Faced and Solved -- 2.6.1 Clutter -- 2.6.2 Jamming Avoidance -- 2.6.3 Communication -- 2.6.4 Predator-Prey Interactions -- 2.7 Phylogeny and Diversification of Echolocation in Bats and Toothed Whales -- 2.8 Summary -- References -- Chapter 3: Production of Biosonar Signals: Structure and Form -- 3.1 Introduction -- 3.2 Signal Production in Dolphins -- 3.2.1 Site of the Sound Source -- 3.2.1.1 Propagation Through the Head of Dolphins -- 3.3 Signal Production in Bats -- 3.3.1 Respiratory Dynamics of Sonar Pulse Production -- 3.3.1.1 Timing of Sonar Pulses in Respiratory Cycle -- 3.3.1.2 Respiration and Sonar Pulse Intensity -- 3.3.2 Respiratory Muscle Specializations for Echolocation -- 3.3.3 Respiration, Wingbeat Cycle, and Sonar Pulse Emission -- 3.4 The Larynx -- 3.4.1 Anatomy -- 3.4.2 Innervation -- 3.4.3 Sensory Feedback -- 3.4.4 Vocal Membranes: The Laryngeal Sound Source -- 3.4.5 Laryngeal Control of Sonar Pulse Timing: The Laryngeal Gate. , 3.5 The Biosonar Signal in Dolphins -- 3.5.1 Wave Shapes and Frequency Spectra -- 3.5.2 Transmission Beam Pattern -- 3.5.3 Relationship Between Source Level and Center Frequency -- 3.5.4 Effects of Hearing Loss -- 3.6 Biosonar Signal of Bats -- 3.6.1 Achieving High Pulse Repetition Rates -- 3.6.2 Control of Fundamental Frequency -- 3.6.2.1 Long CF-FM Bats -- 3.6.2.2 FM Bats -- 3.6.3 Acoustic Filters of Laryngeal Sound -- 3.6.3.1 Vocal Tract Filters -- 3.6.3.2 Subglottal Filters -- 3.6.3.3 Beamforming of the Sonar Signal -- 3.7 Echolocation in Air with Clicks -- 3.7.1 Lingual Sonar Clicks -- 3.7.2 Syringeal Sonar Clicks -- 3.8 Conclusions -- References -- Chapter 4: Sound Intensities of Biosonar Signals from Bats and Toothed Whales -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Transmission Loss -- 4.2.2 Acoustic Localization -- 4.2.2.1 Different Types of Arrays -- 4.2.2.2 Theory of Acoustic Localization -- 4.2.2.3 Precision in Source Localization -- 4.3 Metrics -- 4.4 Source Levels and Directionality from Bats and Toothed Whales -- 4.5 Modulation of the Source Level -- 4.5.1 The Sonar Equations -- 4.5.2 Modeling the Received Level from Echoes in Clutter -- 4.5.3 Automatic Gain Control -- 4.5.4 Acoustic Predator-Prey Interactions -- 4.6 Summary -- References -- Chapter 5: Hearing During Echolocation in Whales and Bats -- 5.1 Introduction -- 5.2 Hearing Sensation Level Changes -- 5.3 Auditory Evoked Potential Thresholds -- 5.4 Hearing Loud Signals and Quiet Returns -- 5.5 Neural Mechanisms for Hearing in Echolocating Bats -- 5.5.1 Self-Stimulation -- 5.5.2 Masking -- 5.6 Vocal Influence on Auditory Processing and Facilitation -- 5.7 Corollary Discharges and Efferent Influences on Auditory Processing -- 5.8 Echolocation and Passive Listening in Groups -- 5.9 Comparisons of Whale and Bat Hearing Measured During Echolocation -- 5.10 Summary -- References. , Chapter 6: Localization and Classification of Targets by Echolocating Bats and Dolphins -- 6.1 Introduction -- 6.1.1 Limitations on Comparisons Between Dolphins and Bats -- 6.2 Target Detection and the Operating Range of Echolocation in Relation to the Emission Patterns of Broadcast Signals -- 6.3 Perception of Target Range from Echo Delay -- 6.4 Distortions of Perception for Target Range by Flying Bats -- 6.5 Perception of Target Shape: Echo Spectra and Glint Delays -- 6.6 Summary -- References -- Chapter 7: On-Animal Methods for Studying Echolocation in Free-Ranging Animals -- 7.1 Introduction -- 7.2 Animal-Borne Devices for Studying Echolocation -- 7.2.1 Tags for Bats -- 7.2.2 Tags for Toothed Whales -- 7.2.3 Sound Acquisition -- 7.2.4 Nonacoustic Sensors -- 7.2.5 Impact of Tags -- 7.3 Exploring and Visualizing On-Animal Echolocation Data -- 7.3.1 Sensor Fusion -- 7.3.2 Event Detection -- 7.3.3 Visualization -- 7.3.4 Quantifying Tag Data from Echolocating Animals -- 7.3.4.1 Sound Source Parameters -- 7.3.4.2 Echo Parameters -- 7.4 Summary and Future Directions -- References -- Chapter 8: Analysis of Natural Scenes by Echolocation in Bats and Dolphins -- 8.1 Introduction -- 8.2 Characterizing Auditory Scenes of Echolocating Animals -- 8.2.1 Bats -- 8.2.2 Dolphins -- 8.3 Studies of Auditory Scene Analysis in Echolocating Animals -- 8.3.1 Bats -- 8.3.2 Dolphins -- 8.3.2.1 The Littoral Ocean (Noisy, Reverberant, and Cluttered) -- 8.3.2.2 Tracking Prey in the Presence of Conspecifics -- 8.4 Challenges and Future Direction for the Study of Auditory Scene Analysis in Bats and Dolphins -- References -- Chapter 9: Echolocation in Air and Water -- 9.1 Introduction -- 9.2 The Physical Framework of Operating Biosonars in Air and Water -- 9.2.1 Background -- 9.2.2 Source Levels and Acoustic Outputs -- 9.2.3 Directionality, Frequency, and Backscatter. , 9.2.4 Transmission Loss and Masking Noise -- 9.3 Methods for Studying Echolocation in the Wild -- 9.3.1 Historical Background -- 9.3.2 Bats -- 9.3.3 Toothed Whales -- 9.4 Echolocation in the Wild -- 9.4.1 Bat Echolocation in the Wild -- 9.4.2 Toothed Whale Echolocation in the Wild -- 9.4.3 A Case Study: Blainville's Beaked Whale -- 9.4.4 Other Species of Toothed Whales -- 9.5 Predator-Prey Interactions -- 9.5.1 Bats and Their Prey -- 9.5.2 Toothed Whales, Their Prey, and Predators -- 9.6 Summary: Comparison of Biosonars in Air and Water -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...