GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Key words: Algaenan ; Chlamydomonas ; Sporopollenin ; Zygospore
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The unicellular green alga Chlamydomonas monoica Strehlow is known to produce zygospores with a cell wall that is resistant against microbial and chemical attack. This resistance is thought to be due to the presence of a sporopollenin-like material. However, the resistant nature of sporopollenin-like materials seriously hampers their structural analysis. With complementary techniques such as 13C-nuclear magnetic resonance spectroscopy, Curie-point pyrolysis-gas chromatography/mass spectroscopy and RuO4 chemical degradation, the chemical composition of resistant biopolymer in the isolated cell walls of C. monoica zygospores was determined. This material is composed of C22–C30 linear alcohols and carboxylic acids, intermolecularly linked via ester and ether-linkages similar to the resistant aliphatic biopolymers encountered in the walls of the vegetative cells of the algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: The Kryos Basin is a deep-sea hypersaline anoxic basin (DHAB) located in the Eastern Mediterranean Sea (34.98°N 22.04°E). It is filled with brine of re-dissolved Messinian evaporites and is nearly saturated with MgCl2-equivalents, which makes this habitat extremely challenging for life. The strong density difference between the anoxic brine and the overlying oxic Mediterranean seawater impedes mixing, giving rise to a narrow chemocline. Here, we investigate the microbial community structure and activities across the seawater–brine interface using a combined biogeochemical, next-generation sequencing, and lipid biomarker approach. Within the interface, we detected fatty acids that were distinctly 13C-enriched when compared to other fatty acids. These likely originated from sulfide-oxidizing bacteria that fix carbon via the reverse tricarboxylic acid cycle. In the lower part of the interface, we also measured elevated rates of methane oxidation, probably mediated by aerobic methanotrophs under micro-oxic conditions. Sulfate reduction rates increased across the interface and were highest within the brine, providing first evidence that sulfate reducers (likely Desulfovermiculus and Desulfobacula) thrive in the Kryos Basin at a water activity of only ~0.4 Aw. Our results demonstrate that a highly specialized microbial community in the Kryos Basin has adapted to the poly-extreme conditions of a DHAB with nearly saturated MgCl2 brine, extending the known environmental range where microbial life can persist.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-18
    Description: Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...