GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Research  (1)
  • Oxford University Press  (1)
  • 1
    Publication Date: 2024-02-07
    Description: Eutrophication in marine waters is traditionally assessed by checking if nutrients, algal biomass and oxygen are below/above a given threshold. However, increased biomass, nutrient concentrations and oxygen demand do not lead to undesirable environmental effects if the flow of carbon/energy from primary producers toward high trophic levels is consistently preserved. Consequently, traditional indicators might provide a misleading assessment of the eutrophication risk. To avoid this, we propose to evaluate eutrophication by using a new index based on plankton trophic fluxes instead of biogeochemical concentrations. A preliminary, model-based, assessment suggests that this approach might give a substantially different picture of the eutrophication status of our seas, with potential consequences on marine ecosystem management. Given the difficulties to measure trophic fluxes in the field, the use of numerical simulations is recommended although the uncertainty associated with biogeochemical models inevitably affects the reliability of the index. However, given the effort currently in place to develop refined numerical tools describing the marine environment (Ocean Digital Twins), a reliable, model-based, eutrophication index could be operational in the near future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: This study investigates the impact of future changes in atmospheric synoptic variability (ASV) on ocean properties and biogeochemical cycles in the tropical Pacific Ocean using coupled and forced atmosphere–ocean model experiments. Future climate projections show an annual mean decrease in ASV in subtropical gyres and an increase in the tropical band. Maintaining ASV to current values lead to a deepening of the mixed layer in subtropical regions and a shalllowing at the equator associated with a sea surface temperature decrease. The changes in ASV impact the large-scale ocean circulation and the strength of the subtropical and tropical cells, which constrain the equatorial water upwelling and the tropical net primary productivity. Ultimately, this study highlights the significance of ASV in understanding the impacts of climate change on ocean dynamics and biogeochemical processes, as half of the primary productivity decline due to climate change is caused by changes of ASV in the tropical Pacific Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...