GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-03-12
    Description: Half of the microbial cells in the Earth’s oceans are found in sediments1. Many of these cells are members of the Archaea2, single-celled prokaryotes in a domain of life separate from Bacteria and Eukaryota. However, most of these archaea lack cultured representatives, leaving their physiologies and placement on the tree of life uncertain. Here we show that the uncultured miscellaneous crenarchaeotal group (MCG) and marine benthic group-D (MBG-D) are among the most numerous archaea in the marine sub-sea floor. Single-cell genomic sequencing of one cell of MCG and three cells of MBG-D indicated that they form new branches basal to the archaeal phyla Thaumarchaeota3 and Aigarchaeota4, for MCG, and the order Thermoplasmatales, for MBG-D. All four cells encoded extracellular protein-degrading enzymes such as gingipain and clostripain that are known to be effective in environments chemically similar to marine sediments. Furthermore, we found these two types of peptidase to be abundant and active in marine sediments, indicating that uncultured archaea may have a previously undiscovered role in protein remineralization in anoxic marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature 499 (2013): 431–437, doi:10.1038/nature12352.
    Description: Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called ‘microbial dark matter’. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.
    Description: The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We also thank the CeBiTec Bioinformatics Resource Facility, which is supported byBMBF grant 031A190. B.P.H. and J.A.D. were supported by the NASA Exobiology grant EXO-NNX11AR78GandNSFOISE 096842and B.P.H. by a generous contribution from G. Fullmer through the UNLV Foundation. S.M.S was supported by NSF grants OCE-0452333 and OCE-1136727, and the WHOI’s Andrew W. Mellon Fund for Innovative Research; and S.J.H. by the Canadian Foundation for Innovation, the British Columbia Knowledge Development Fund, the National Sciences and Engineering Research Council (NSERC) of Canada and the TULA foundation funded Centre for Microbial Diversity and Evolution (CMDE), and the Canadian Institute for Advanced Research (CIFAR). R.S. was supported by NSF grants DEB-841933, EF-826924, OCE-1232982, OCE-821374 and OCE-1136488, and the Deep Life I grant by the Alfred P. Sloan Foundation. P.H.was supported by a Discovery Outstanding Researcher Award (DORA) from the Australian Research Council, grant DP120103498.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...