GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group  (1)
  • Wiley  (1)
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3Nature Geoscience, Nature Publishing Group, 7(2), pp. 113-116, ISSN: 1752-0894
    Publication Date: 2018-08-10
    Description: The Antarctic Circumpolar Current is key to the mixing and ventilation of the world’s oceans1, 2, 3, 4, 5. This current flows from west to east between about 45° and 70° S (refs 1, 2, 3) connecting the Atlantic, Pacific and Indian oceans, and is driven by westerly winds and buoyancy forcing. High levels of productivity in the current regulate atmospheric CO2 concentrations6. Reconstructions of the current during the last glacial period suggest that flow speeds were faster7 or similar8 to present, and it is uncertain whether the strength and position of the westerly winds changed9, 10, 11. Here we reconstruct Antarctic Circumpolar Current bottom speeds through the constricting Drake Passage and Scotia Sea during the Last Glacial Maximum and Holocene based on the mean grain size of sortable silt from a suite of sediment cores. We find essentially no change in bottom flow speeds through the region, and, given that the momentum imparted by winds, and modulated by sea-ice cover, is balanced by the interaction of these flows with the seabed, this argues against substantial changes in wind stress. However, glacial flow speeds in the sea-ice zone12 south of 56° S were significantly slower than present, whereas flow in the north was faster, but not significantly so. We suggest that slower flow over the rough topography south of 56° S may have reduced diapycnal mixing in this region during the last glacial period, possibly reducing the diapycnal contribution to the Southern Ocean overturning circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...