GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Inductively coupled plasma mass spectrometry. ; Electronic books.
    Description / Table of Contents: Presenting an in-depth discussion of the fundamental principles, analytical advantages, and practical capabilities of ICP-MS, this volume offers key concepts in a reader-friendly format suitable for novices. Written by an insider with more than 25 years experience in product development, customer support, and technical marketing for an ICP-MS instrument vendor, the book highlights this powerful ultra trace-element technique as a practical solution to real-world problems. The new edition covers new technologies and applications, and discusses nonstandard sampling accessories and much more.
    Type of Medium: Online Resource
    Pages: 1 online resource (441 pages)
    Edition: 3rd ed.
    ISBN: 9781466555440
    Series Statement: Practical Spectroscopy Series
    DDC: 543.65
    Language: English
    Note: Front Cover -- Contents -- Foreword -- Preface -- Acknowledgment -- Author -- Chapter 1 - An Overview of ICP-MS -- Chapter 2 - Principles of Ion Formation -- Chapter 3 - Sample Introduction -- Chapter 4 - Plasma Source -- Chapter 5 - Interface Region -- Chapter 6 - Ion-Focusing System -- Chapter 7 - Mass Analyzers: Quadrupole Technology -- Chapter 8 - Mass Analyzers: Double-Focusing Magnetic Sector Technology -- Chapter 9 - Mass Analyzers: Time-of-Flight Technology -- Chapter 10 - Mass Analyzers: Collision/Reaction Cell and Interface Technology -- Chapter 11 - Ion Detectors -- Chapter 12 - Peak Measurement Protocol -- Chapter 13 - Methods of Quantitation -- Chapter 14 - Review of Interferences -- Chapter 15 - Sample Preparation -- Chapter 16 - Routine Maintenance -- Chapter 17 - Alternative Sample Introduction Techniques -- Chapter 18 - Coupling ICP-MS with Chromatographic Techniques for Trace Element Speciation -- Chapter 19 - Common ICP-MS Applications -- Chapter 20 - Emerging ICP-MS Application Areas -- Chapter 21 - Comparing ICP-MS with Other Atomic Spectroscopic Techniques -- Chapter 22 - How to Select an ICP Mass Spectrometer: Some Important Analytical Considerations -- Chapter 23 - Final Thoughts -- Appendix: Useful Contact Information -- Glossary of ICP-MS Terms -- References -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Inductively coupled plasma mass spectrometry. ; Electronic books.
    Description / Table of Contents: Written by one of the very first practitioners of ICP-MS, a Practical Guide to ICP-MS and Other AS Techniques: A Tutorial for Beginners presents ICP-MS in a completely novel and refreshing way.
    Type of Medium: Online Resource
    Pages: 1 online resource (461 pages)
    Edition: 4th ed.
    ISBN: 9781000915471
    Series Statement: Practical Spectroscopy Series
    DDC: 543.65
    Language: English
    Note: Cover -- Half Title -- Series -- Title -- Copyright -- Contents -- Foreword -- Preface -- Acknowledgments -- About the Author -- Chapter 1 An Overview of ICP Mass Spectrometry -- 1.1 Principles of Operation -- Chapter 2 Principles of Ion Formation -- 2.1 Ion Formation -- 2.2 Natural Isotopes -- Chapter 3 Sample Introduction -- 3.1 Aerosol Generation -- 3.2 Droplet Selection -- 3.3 Nebulizers -- 3.4 Concentric Design -- 3.5 Cross-Flow Design -- 3.6 Microflow Design -- 3.7 Spray Chambers -- 3.8 Double-Pass Spray Chamber -- 3.9 Cyclonic Spray Chamber -- 3.10 Aerosol Dilution -- 3.11 Final Thoughts -- Chapter 4 Plasma Source -- 4.1 The Plasma Torch -- 4.2 Formation of an ICP Discharge -- 4.3 The Function of the RF Generator -- 4.4 Ionization of the Sample -- Chapter 5 Interface Region -- 5.1 Capacitive Coupling -- 5.2 Ion Kinetic Energy -- 5.3 Benefits of a Well-Designed Interface -- 5.4 Final Thoughts -- Chapter 6 Ion-Focusing System -- 6.1 Role of the Ion Optics -- 6.2 Dynamics of Ion Flow -- 6.3 Commercial Ion Optic Designs -- Chapter 7 Mass Analyzers: Quadrupole Technology -- 7.1 Basic Principles of Operation -- 7.2 Quadrupole Performance Criteria -- 7.3 Resolution -- 7.4 Abundance Sensitivity -- 7.5 Benefit of Good Abundance Sensitivity -- Chapter 8 Mass Analyzers: Double-Focusing Magnetic Sector Technology -- 8.1 Magnetic-Sector Mass Spectroscopy: A Historical Perspective -- 8.2 Use of Magnetic-Sector Technology for ICP-MS -- 8.3 Principles of Operation of Magnetic-Sector Technology -- 8.4 Resolving Power -- 8.5 Other Benefits of Magnetic-Sector Instrumentation -- 8.6 Simultaneous-Measurement Approach Using One Detector -- 8.7 Final Thoughts -- Chapter 9 Mass Analyzers: Time-of-Flight Technology -- 9.1 Basic Principles of TOF Technology -- 9.2 Commercial Designs -- 9.3 Differences between Orthogonal and On-Axis TOF. , 9.4 Benefits of TOF Technology for ICP-MS -- 9.5 Rapid Transient Peak Analysis -- 9.6 Improved Precision -- 9.7 Rapid Data Acquisition -- 9.8 High-Speed Multi-Elemental Imaging Using Laser Ablation Coupled with TOF-ICP-MS -- 9.9 Laser Ablation Laser Ionization Time-of-Flight Mass Spectrometry -- 9.10 Final Thoughts -- Chapter 10 Mass Analyzers: Collision/Reaction Cell and Interface Technology -- 10.1 Basic Principles of Collision/Reaction Cells -- 10.2 Different Collision/Reaction Cell Approaches -- 10.3 Collisional Mechanisms Using Nonreactive Gases and Kinetic Energy Discrimination -- 10.4 Reaction Mechanisms with Highly Reactive Gases and Discrimination by Selective Bandpass Mass Filtering -- 10.5 Dynamic Reaction Cell -- 10.6 Low-Mass Cutoff Collision/Reaction Cell -- 10.7 Using Reaction Mechanisms in a Collision Cell -- 10.8 The Universal Cell -- 10.9 The Collision/Reaction Interface -- 10.10 Detection Limit Comparison of Single-Quadrupole CRC Systems -- 10.11 Triple-Quadrupole Systems -- 10.12 M/S Mode -- 10.13 MS/MS Mode -- 10.14 On-Mass MS/MS Mode -- 10.15 Mass-Shift MS/MS Mode -- 10.16 Multi-Quad Systems -- 10.17 Difference Between a Triple and Multi Quad System -- 10.18 Final Thoughts -- Chapter 11 Ion Detectors -- 11.1 Channel Electron Multiplier -- 11.2 Faraday Cup -- 11.3 Discrete-Dynode Electron Multiplier -- 11.4 Extending the Dynamic Range -- 11.5 Filtering the Ion Beam -- 11.6 Using Two Detectors -- 11.7 Using Two Scans with One Detector -- 11.8 Using One Scan with One Detector -- 11.9 Extending the Dynamic Range Using Pulse-Only Mode -- 11.10 Simultaneous Array Detectors -- Chapter 12 Peak Measurement Protocol -- 12.1 Measurement Variables -- 12.2 Measurement Protocol -- 12.3 Optimization of Measurement Protocol -- 12.4 Multielement Data Quality Objectives -- 12.5 Data Quality Objectives for Single-Particle ICP-MS Studies. , 12.6 Final Thoughts -- Chapter 13 Methods of Quantitation -- 13.1 Quantitative Analysis -- 13.2 External Standardization -- 13.3 Standard Additions -- 13.4 Addition Calibration -- 13.5 Semiquantitative Analysis -- 13.6 Isotope Dilution -- 13.7 Isotope Ratios -- 13.8 Internal Standardization -- Chapter 14 Review of ICP-MS Interferences -- 14.1 Spectral Interferences -- 14.2 Oxides, Hydroxides, Hydrides and Doubly Charged Species -- 14.3 Isobaric Interferences -- 14.4 Ways to Compensate for Spectral Interferences -- 14.5 Mathematical Correction Equations -- 14.6 Cool/Cold Plasma Technology -- 14.7 Collision/Reaction Cells -- 14.8 High-Resolution Mass Analyzers -- 14.9 Matrix Interferences -- 14.10 Compensation Using Internal Standardization -- 14.11 Space Charge-Induced Matrix Interferences -- Chapter 15 Routine Maintenance -- 15.1 Sample-Introduction System -- 15.2 Peristaltic Pump Tubing -- 15.3 Nebulizers -- 15.4 Spray Chamber -- 15.5 Plasma Torch -- 15.6 Interface Region -- 15.7 Ion Optics -- 15.8 Roughing Pumps -- 15.9 Air Filters -- 15.10 Other Components to Be Periodically Checked -- 15.11 The Detector -- 15.12 Turbomolecular Pumps -- 15.13 Mass Analyzer and Collision/Reaction Cell -- 15.14 Final Thoughts -- Chapter 16 Sampling and Sample-Preparation Techniques -- 16.1 Collecting the Sample -- 16.2 Preparing the Sample -- 16.3 Cryogenic Grinding -- 16.4 Sample Dissolution -- 16.5 Reasons for Dissolving Samples -- 16.6 Digested Sample Weights -- 16.7 Microwave Digestion Considerations -- 16.8 Why Use Microwave Digestion? -- 16.9 Choice of Acids -- 16.10 Commercial Microwave Technology -- 16.11 Digestion Strategies -- 16.12 Fundamental Principles of Microwave Digestion Technology -- 16.13 Sequential Systems -- 16.14 Rotor-Based Technology -- 16.15 Single Reaction Chamber Technology -- 16.16 Single Cavity Mode. , 16.17 Principles of Single Cavity Mode -- 16.18 Automation with Single Cavity Mode -- 16.19 Sampling Procedures for Mercury -- 16.20 Reagent Blanks -- 16.21 Final Thoughts -- Chapter 17 A Practical Guide to Reducing Errors and Contamination Using Plasma Spectrochemistry -- 17.1 Understanding Data Accuracy and Precision -- 17.2 Estimating Error -- 17.3 Types of Errors -- 17.4 Standards and Reference Materials -- 17.5 Using Standards and Reference Materials -- 17.6 Calibration Curves -- 17.7 Dynamic Range, Concentration and Error -- 17.8 Laboratory Sources of Error and Contamination -- 17.9 Sources of Laboratory Contamination and Error -- 17.10 Water Quality -- 17.11 Reagents -- 17.12 Laboratory Environment and Personnel -- 17.13 General Principles and Practices -- Chapter 18 Performance- and Productivity-Enhancement Techniques -- 18.1 Performance-Enhancing Techniques Laser Ablation -- 18.2 Commercial Laser Ablation Systems for ICP-MS -- 18.3 Excimer Lasers -- 18.4 Benefits of Laser Ablation for ICP-MS -- 18.5 Optimum Laser Design Based on the Application Requirements -- 18.6 193-nm Laser Technology -- 18.7 Flow Injection Analysis -- 18.8 Electrothermal Vaporization (ETV) -- 18.9 Chilled Spray Chambers and Desolvation Devices -- 18.10 Water-Cooled and Peltier-Cooled Spray Chambers -- 18.11 Ultrasonic Nebulizers -- 18.12 Specialized Microflow Nebulizers with Desolvation Techniques -- 18.13 Direct Injection Nebulizers -- 18.14 Productivity-Enhancing Techniques -- 18.15 Faster Analysis Times -- 18.16 Automated In-Line Auto-Dilution and Auto-Calibration -- 18.17 Automated Sample Identification and Tracking -- Chapter 19 Coupling ICP-MS with Chromatographic Separation Techniques for Speciation Studies -- 19.1 HPLC Coupled with ICP-MS -- 19.2 Chromatographic Separation Requirements -- 19.3 Ion Exchange Chromatography (IEC). , 19.4 Reversed-Phase Ion-Pair Chromatography (RP-IPC) -- 19.5 Column Material -- 19.6 Isocratic or Gradient Elution -- 19.7 Sample-Introduction Requirements -- 19.8 Optimization of ICP-MS Parameters -- 19.9 Compatibility with Organic Solvents -- 19.10 Collision/Reaction Cell or Interface Capability -- 19.11 Optimization of Peak Measurement Protocol -- 19.12 Full Software Control and Integration -- 19.13 Final Thoughts -- Chapter 20 Overview of the ICP-MS Application Landscape -- 20.1 Application Capability -- 20.2 Analytical Challenges -- 20.3 Major Trends -- 20.4 What is Driving ICP-MS Development? -- 20.5 Future Direction -- Chapter 21 Fundamental Principles and Applications of Atomic Absorption and Atomic Fluorescence -- 21.1 Flame AAS -- 21.2 Advantages of FLAAS -- 21.3 FLAAS Interferences and Their Control -- 21.4 Disadvantages of FLAAS -- 21.5 Graphite-Furnace AAS -- 21.6 Advantages of GFAAS -- 21.7 GFAAS Interferences and Their Control -- 21.8 Advantages of GFAAS -- 21.9 Disadvantages of GFAAS -- 21.10 Vapor-Generation AAS -- 21.11 Advantages of Cold-Vapor AAS -- 21.12 Disadvantages of Cold-Vapor AAS -- 21.13 Hydride-Generation AAS -- 21.14 Advantages of Hydride-Generation AAS -- 21.15 Disadvantages of Hydride-Generation AAS -- 21.16 Hyphenated Techniques -- 21.17 Atomic Fluorescence -- 21.18 Advantages and Disadvantages of AFS -- 21.19 Final Thoughts -- Chapter 22 Fundamental Principles, Method Development and Operational Requirements of ICP-Optical Emission Spectroscopy -- 22.1 Basic Definitions -- 22.2 Principles of Emission -- 22.3 Atomic and Ionic Emission -- 22.4 Instrumentation -- 22.5 Sample Introduction -- 22.6 Aerosol Generation -- 22.7 Nebulizers -- 22.8 Spray Chambers -- 22.9 Torches -- 22.10 Spectrometers -- 22.11 Fore-Optics -- 22.12 Optical Designs -- 22.13 Detectors -- 22.14 Historical Perspective -- 22.15 Photomultiplier Tubes. , 22.16 Photodiode Arrays.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...