GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group  (4)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (1)
Document type
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 281 (1979), S. 535-538 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The glacial–interglacial amplitude (GIA) of oxygen-isotope curves in sediment cores from the Atlantic Ocean is much higher than the amplitude in the Pacific. This difference is explained by nonsynchronous CaCO3 dissolution cycles during the Upper Pleistocene that amplify the GIA in ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 273 (1978), S. 199-202 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Stable-isotope composition of carbonate precipitated by hermatypic corals and associated benthonic foraminifera is strongly influenced by photosynthesis of symbiotic algae. In situ 14C and 45Ca uptake experiments show that when photosynthesis increases, more light ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 327 (1987), S. 703-704 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Sediment-trap experiments at our well-studied site in the Panama Basin have demonstrated that a large fraction of the biogenic particulate flux consists of coccolithophorids, Umbilicosphaera sibogae (an occasional dominant under bloom conditions) and Emiliania huxleyi (a ubiquitous species during ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 297 (1982), S. 220-222 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The oxygen-isotope composition of planktonic foraminifera in deep sea cores is a major tool in Pleistocene research. It serves to determine palaeotemperatures, palaeosalinities, sea-level changes, continental climatic conditions and provides accurate stratigraphy for the Pleistocene epoch2'11. ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution November, 1978
    Description: Planktonic foraminifera from plankton tows, sediment traps and sediments from the central North Atlantic were studied in order to understand how they acquire their oxygen and carbon isotope compositions. Shallow dwelling planktonic foraminifera (mostly spinose species), collected in plankton tows in the photic zone, show light isotopic compositions possibly in slight negative deviation from oxygen isotopic equilibrium. Radioactive tracer experiments using 14C and 45Ca were conducted on shallow dwelling benthonic foraminifera and hermatypic corals. They show that photosynthesis of symbiotic algae within these organisms increases the amount of metabolic C02 incorporated into the skeleton which consequently becomes isotopically lighter. Because shallow dwelling planktonic foraminifera contain symbiotic algae it is suggested that their light isotopic compositions are also caused by photosynthetically enhanced incorporation of metabolic C02 in the skeleton. Planktonic foraminifera collected in sediment traps and sediments show heavier oxygen isotope compositions that are in equilibrium for CaC03 deposited in the photic zone. At the same time the weight/individual for these foraminifera is almost doubled compared to those from plankton tows. I suggest that these apparent equilibrium compositions are achieved by a combination of light, perhaps non-equilibrium skeletons deposited in the photic zone and isotopically heavier calcite deposited below the photic zone. The latter being isotopically heavy because temperatures are lower, metabolic activity is reduced, and photosynthesis by the symbiotic algae stops. Dissolution of planktonic foraminifera on the ocean floor removes first the light-weight thin shelled individuals of a species population. Because these individuals are isotopically lighter, the isotopic composition of the surviving population is heavier. The scheme described above is applied to explain the effect of dissolution on the glacial-interglaical amplitude of the Pleistocene isotopic record in the Atlantic and the Pacific Oceans. The timing of dissolution cycles in the two oceans is out of phase. Dissolution during the glacial in the Atlantic and during the interglacial in the Pacific makes the isotopic composition heavier. Preservation in the Atlantic during interglacials and in the Pacific during the glacials makes the isotopic composition lighter. The net effect is amplification of glacial-interglacial amplitude in the Atlantic and reduction of the amplitude in the Pacific.
    Description: This thesis was supported by the Ocean Sciences Division of the National Science Foundation under Grant #77-07732. Additional support came from the Geological Society of America, Grant #1995-75, and from the Woods Hole Oceanographic Institution Education Office.
    Keywords: Foraminifera ; Corals ; Fossil ; Marine plankton
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...