GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancers, MDPI AG, Vol. 14, No. 4 ( 2022-02-21), p. 1091-
    Abstract: Merkel cell carcinoma (MCC) is a rare type of skin cancer for which an in vitro model is still lacking. MCC tumorigenesis is associated either with the integration of Merkel cell polyomavirus into the host genome, or with the accumulation of somatic mutations upon chronic exposure to UV light. Transgenic animals expressing the viral oncoproteins, which are constitutively expressed in virus-related MCC, do not fully recapitulate MCC. Although cell-line-derived xenografts have been established for the two subtypes of MCC, they still present certain limitations. Here, we generated organotypic epithelial raft cultures (OERCs) of MCC by using primary human keratinocytes and both virus-positive and virus-negative MCC cell lines. The primary human keratinocytes and the tumor cells were grown on top of a dermal equivalent. Histological and immunohistochemical examination of the rafts confirmed the growth of MCC cells. Furthermore, gene expression analysis revealed differences in the expression profiles of the distinct tumor cells and the keratinocytes at the transcriptional level. In summary, considering the limited availability of patient samples, OERCs of MCC may constitute a suitable model for evaluating the efficacy and selectivity of new drug candidates against MCC; moreover, they are a potential tool to study the oncogenic mechanisms of this malignancy.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Molecular Sciences Vol. 22, No. 19 ( 2021-10-01), p. 10674-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 19 ( 2021-10-01), p. 10674-
    Abstract: Loss-of-function events in tumor suppressor genes (TSGs) contribute to the development and progression of cutaneous malignant melanoma (CMM). Epigenetic alterations are the major mechanisms of TSG inactivation, in particular, silencing by promoter CpG-island hypermethylation. TSGs are valuable tools in diagnosis and prognosis and, possibly, in future targeted therapy. The aim of this narrative review is to outline bona fide TSGs affected by promoter CpG-island hypermethylation and their functional role in the progression of CMM. We conducted a systematic literature review to identify studies providing evidence of bona fide TSGs by cell line or animal experiments. We performed a broad first search and a gene-specific second search, supplemented by reference checking. We included studies describing bona fide TSGs in CMM with promoter CpG-island hypermethylation in which inactivating mechanisms were reported. We extracted data about protein role, pathway, experiments conducted to meet the bona fide criteria and hallmarks of cancer acquired by TSG inactivation. A total of 24 studies were included, describing 24 bona fide TSGs silenced by promoter CpG-island hypermethylation in CMM. Their effect on cell proliferation, apoptosis, growth, senescence, angiogenesis, migration, invasion or metastasis is also described. These data give further insight into the role of TSGs in the progression of CMM.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 19 ( 2021-09-29), p. 10568-
    Abstract: Cutaneous melanoma (CM) is the most aggressive form of skin cancer, and its worldwide incidence is rapidly increasing. Early stages can be successfully treated by surgery, but once metastasis has occurred, the prognosis is poor. However, some 5–10% of thick (≥2 mm) melanomas do not follow this scenario and run an unpredictable course. Little is known about the factors that contribute to metastasis in some patient with thick melanomas and the lack thereof in thick melanoma patients who never develop metastatic disease. We were therefore interested to study differential gene expression and pathway analysis and compare non-metastatic and metastatic thick melanomas. We found that the TNF-like weak inducer of apoptosis (TWEAK) pathway was upregulated in thick non-metastasizing melanomas. MAP3K14 (NIK1), BIRC2 (cIAP1), RIPK1, CASP7, CASP8, and TNF play an important role in inhibiting proliferation and invasion of tumor cells via the activation of the non-canonical NF-κB signaling pathway. In particular, this pathway sensitizes melanoma cells to TNF-alpha and activates the apoptosis module of the TWEAK pathway in thick non-metastasizing melanomas. Hence, our study suggests a potential role of the TWEAK pathway in inhibiting thick melanoma from metastasis. Exploitation of these genes and the pathway they control may open future therapeutic avenues.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...