GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancers, MDPI AG, Vol. 14, No. 13 ( 2022-07-01), p. 3240-
    Abstract: Recommendations in Barrett’s esophagus (BE) guidelines are mainly based on male patients. We aimed to evaluate sex differences in BE patients in (1) probability of and (2) time to neoplastic progression, and (3) differences in the stage distribution of neoplasia. We conducted a multicenter prospective cohort study including 868 BE patients. Cox regression modeling and accelerated failure time modeling were used to estimate the sex differences. Neoplastic progression was defined as high-grade dysplasia (HGD) and/or esophageal adenocarcinoma (EAC). Among the 639 (74%) males and 229 females that were included (median follow-up 7.1 years), 61 (7.0%) developed HGD/EAC. Neoplastic progression risk was estimated to be twice as high among males (HR 2.26, 95% CI 1.11–4.62) than females. The risk of HGD was found to be higher in males (HR 3.76, 95% CI 1.33–10.6). Time to HGD/EAC (AR 0.52, 95% CI 0.29–0.95) and HGD (AR 0.40, 95% CI 0.19–0.86) was shorter in males. Females had proportionally more EAC than HGD and tended to have higher stages of neoplasia at diagnosis. In conclusion, both the risk of and time to neoplastic progression were higher in males. However, females were proportionally more often diagnosed with (advanced) EAC. We should strive for improved neoplastic risk stratification per individual BE patient, incorporating sex disparities into new prediction models.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancers, MDPI AG, Vol. 14, No. 5 ( 2022-02-28), p. 1252-
    Abstract: Background chemotherapy is part of most breast cancer (BC) treatment schedules. However, a substantial fraction of BC tumors does not respond to the treatment. Unfortunately, no standard biomarkers exist for response prediction. Therefore, we aim to develop ex vivo sensitivity assays for two types of commonly used cytostatics (i.e., platinum derivates and taxanes) on organotypic BC tissue slices. Methods: Ex vivo cisplatin sensitivity assays were established using organotypic tissue slices derived from the surgical resection material of 13 primary BCs and 20 fresh histological biopsies obtained from various metastatic sites. Furthermore, tissue slices of 10 primary BCs were used to establish a docetaxel ex vivo sensitivity assay. Results: Cisplatin sensitivity was assessed by tissue morphology, proliferation and apoptosis, while the relative increase in the mitotic index was discriminative for docetaxel sensitivity. Based on these read-outs, a scoring system was proposed to discriminate sensitive from resistant tumors for each cytostatic. We successful completed the cisplatin sensitivity assay on 12/16 (75%) biopsies as well. Conclusions: We developed an ex vivo cisplatin and docetaxel assay on BC slices. We also adapted the assay for biopsy-sized specimens as the next step towards the correlation of ex vivo test results and in vivo responses.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Toxins, MDPI AG, Vol. 12, No. 10 ( 2020-10-02), p. 638-
    Abstract: Venomous snakes are important subjects of study in evolution, ecology, and biomedicine. Many venomous snakes have alpha-neurotoxins (α-neurotoxins) in their venom. These toxins bind the alpha-1 nicotinic acetylcholine receptor (nAChR) at the neuromuscular junction, causing paralysis and asphyxia. Several venomous snakes and their predators have evolved resistance to α-neurotoxins. The resistance is conferred by steric hindrance from N-glycosylated asparagines at amino acids 187 or 189, by an arginine at position 187 that has been hypothesized to either electrostatically repulse positively charged neurotoxins or sterically interfere with α-neurotoxin binding, or proline replacements at positions 194 or 197 of the nAChR ligand-binding domain to inhibit α-neurotoxin binding through structural changes in the receptor. Here, we analyzed this domain in 148 vertebrate species, and assessed its amino acid sequences for resistance-associated mutations. Of these sequences, 89 were sequenced de novo. We find widespread convergent evolution of the N-glycosylation form of resistance in several taxa including venomous snakes and their lizard prey, but not in the snake-eating birds studied. We also document new lineages with the arginine form of inhibition. Using an in vivo assay in four species, we provide further evidence that N-glycosylation mutations reduce the toxicity of cobra venom. The nAChR is of crucial importance for normal neuromuscular function and is highly conserved throughout the vertebrates as a result. Our research shows that the evolution of α-neurotoxins in snakes may well have prompted arms races and mutations to this ancient receptor across a wide range of sympatric vertebrates. These findings underscore the inter-connectedness of the biosphere and the ripple effects that one adaption can have across global ecosystems.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...