GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (14)
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 19, No. 11 ( 2018-11-02), p. 3438-
    Abstract: In some legume–rhizobium symbioses, host specificity is influenced by rhizobial nodulation outer proteins (Nops). However, the genes encoding host proteins that interact with Nops remain unknown. We generated an Ensifer fredii HH103 NopP mutant (HH103ΩNopP), and analyzed the nodule number (NN) and nodule dry weight (NDW) of 10 soybean germplasms inoculated with the wild-type E. fredii HH103 or the mutant strain. An analysis of recombinant inbred lines (RILs) revealed the quantitative trait loci (QTLs) associated with NopP interactions. A soybean genomic region containing two overlapping QTLs was analyzed in greater detail. A transcriptome analysis and qRT-PCR assay were used to identify candidate genes encoding proteins that interact with NopP. In some germplasms, NopP positively and negatively affected the NN and NDW, while NopP had different effects on NN and NDW in other germplasms. The QTL region in chromosome 12 was further analyzed. The expression patterns of candidate genes Glyma.12g031200 and Glyma.12g073000 were determined by qRT-PCR, and were confirmed to be influenced by NopP.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pharmaceutics, MDPI AG, Vol. 14, No. 2 ( 2022-01-22), p. 262-
    Abstract: This study aimed to systematically compare licochalcone A (LicA) and glabridin (Gla) (whitening agents) release and permeation from Carbomer 940 (CP) hydrogels with different enhancers, and evaluate the relationship between the quantitative enhancement efficacy and structures of the enhancers. An in vitro release study and an in vitro permeation experiment in solution and hydrogels using porcine skin were performed. We found that the Gla–CP hydrogel showed a higher drug release and skin retention amount than LicA–CP due to the higher solubility in medium and better miscibility with the skin of Gla than that of LicA. Enhancers with a higher molecular weight (MW) and lower polarizability showed a higher release enhancement effect (ERrelease) for both LicA and Gla. The Van der Waals forces in the drug–enhancers–CP system were negatively correlated with the drug release percent. Moreover, enhancers with a higher log P and polarizability displayed a higher retention enhancement effect in solution (ERsolution retention) for LicA and Gla. Enhancers decreased the whole intermolecular forces indrug–enhancers-skin system, which had a linear inhibitory effect on the drug retention. Moreover, C=O of ceramide acted asthe enhancement site for drug permeation. Consequently, Transcutol® P (TP) and propylene glycol (PG), seven enhancers showed a higher retention enhancement effect in hydrogel (ERhydrogel retention) for LicA and Gla. Taken together, the conclusions provide a strategy for reasonable utilization of enhancers and formulation optimization in topical hydrogel whitening.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pharmaceutics, MDPI AG, Vol. 14, No. 7 ( 2022-06-24), p. 1333-
    Abstract: The dynamic drug release mechanisms from Carbomer 940 (CP) hydrogels have not been systematically explored elsewhere. This study aimed to investigate the quantitative structure−activity relationship of licorice flavonoids (LFs) compounds on their drug release from CP hydrogels based on LFs-CP interactions and drug solubility in the release medium. Ten LFs-CP hydrogels were formulated, and their in vitro release study was conducted. The intermolecular forces of LFs-CP systems were characterized by FTIR, molecular docking and molecular dynamic simulation. Ten LFs compounds were classified into I (high-release capability) LFs and II (low-release capability) LFs according to the different negative correlations between drug release percent at 48 h and intermolecular forces of drugs-CP, respectively. Moreover, high-release LFs possessed significantly lower log P and higher drug solubility in the release medium than low-release LFs. All I LFs release behaviors best followed the first-order equation, while II LFs release characteristics best fitted the zero-order equation except for isoliquiritigenin. Log P mainly affect the hydrogel relaxation process for I drugs release and the drug diffusion process for II drugs release. Higher log P values for LFs resulted in higher intermolecular strength for I drugs-CP systems and lower drug solubility in the release medium for II drugs, which hindered drug release. Hydrophobic association forces in drug-CP hydrogel played a more and more dominant role in hindering I LFs release with increasing release time. On the other hand, lower drug solubility in the release medium restricted II LFs release, and the dominant role of drug solubility in the release medium increased in 24 h followed by a significant decline after 36 h. Collectively, log P of LFs served as a bridge to determine LFs compound release behaviors and classification from CP hydrogels, which provided guidelines for reasonable design of LFs hydrogels in pharmaceutical topical formulations.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecules, MDPI AG, Vol. 29, No. 12 ( 2024-06-07), p. 2728-
    Abstract: This paper investigates the combustion characteristics and pollutant emission patterns of the mixed combustion of lignite (L) and torrefied pine wood (TPW) under different blending ratios. Isothermal combustion experiments were conducted in a fixed bed reaction system at 800 °C, and pollutant emission concentrations were measured using a flue gas analyzer. Using scanning electron microscopy (SEM) and BET (nitrogen adsorption) experiments, it was found that torrefied pine wood (TPW) has a larger specific surface area and a more developed pore structure, which can facilitate more complete combustion of the sample. The results of the non-isothermal thermogravimetric analysis show that with the TPW blending ratio increase, the entire combustion process advances, and the ignition temperature, maximum peak temperature, and burnout temperature all show a decreasing trend. The kinetic equations of the combustion reaction process of mixed gas were calculated by Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) kinetic equations. The results show that the blending of TPW reduces the activation energy of the combustion reaction of the mixed fuel. When the TPW blending ratio is 80%, the activation energy values of the mixed fuel are the lowest at 111.32 kJ/mol and 104.87 kJ/mol. The abundant alkali metal ions and porous structure in TPW reduce the conversion rates of N and S elements in the fuel to NO and SO2, thus reducing the pollutant emissions from the mixed fuel.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Toxins Vol. 12, No. 1 ( 2019-12-18), p. 1-
    In: Toxins, MDPI AG, Vol. 12, No. 1 ( 2019-12-18), p. 1-
    Abstract: Marine toxins cause great harm to human health through seafood, therefore, it is urgent to exploit new marine toxins detection methods with the merits of high sensitivity and specificity, low detection limit, convenience, and high efficiency. Aptasensors have emerged to replace classical detection methods for marine toxins detection. The rapid development of molecular biological approaches, sequencing technology, material science, electronics and chemical science boost the preparation and application of aptasensors. Taken together, the aptamer-based biosensors would be the best candidate for detection of the marine toxins with the merits of high sensitivity and specificity, convenience, time-saving, relatively low cost, extremely low detection limit, and high throughput, which have reduced the detection limit of marine toxins from nM to fM. This article reviews the detection of marine toxins by aptamer-based biosensors, as well as the selection approach for the systematic evolution of ligands by exponential enrichment (SELEX), the aptamer sequences. Moreover, the newest aptasensors and the future prospective are also discussed, which would provide thereotical basis for the future development of marine toxins detection by aptasensors.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 18 ( 2022-09-06), p. 11205-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 18 ( 2022-09-06), p. 11205-
    Abstract: Biomass type, pyrolysis temperature, and duration can affect biochar properties simultaneously. To further clarify the mechanism of this interaction, the branch and leaf parts of Pond cypress (Taxodium ascendens) were separately pyrolyzed at four peak temperatures (350 °C, 450 °C, 650 °C, and 750 °C) for three different durations (0.5 h, 1 h, and 2 h) in this study. The resulting biochar properties were measured, which included the yield, specific surface area (SSA), pH, EC (electricity conductivity), the bulk and surface elemental composition, and the contents of moisture, ash, fixed carbon, and volatile matter. The results showed that the pyrolysis temperature was more determinant for the modification of all biochar, but the residence time had a significant effect on the yield, pH, and SSA of branch-based biochar (B-biochar) at specific temperatures. However, such a phenomenon only happened on the pH of leaf-based biochar (L-biochar). Results: (1) With the temperature at 350 and 650 °C, the residence time had a significant effect on the yield of B-biochar. (2) The pH of B-biochar and L-biochar varied considerably between durations when the heating temperature hit 650 and 750 °C. (3) The SSA of B-biochar possessed an obvious fluctuation with the time during the pyrolysis from 650 to 750 °C. According to the properties measured above, the principal component and the cluster analysis classified the 24 types of biochar made in this experiment into four groups and revealed that an obvious disparity existed between B-biochar and L-biochar that were pyrolyzed at temperatures ranging from 450 to 750 °C, which suggested that biomass type was the primary factor for biochar-making. All this information can provide valuable references for the optimization of biochar-making in the real world.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Metals, MDPI AG, Vol. 9, No. 5 ( 2019-05-14), p. 563-
    Abstract: Ultra-thin-walled tubes of magnesium alloys have received more and more attention in producing precision components for medical devices. Therefore, thin-walled tubes with high quality are desperately needed. In this study, the process of multi-pass variable wall thickness extrusion was carried out on an AZ80 + 0.4%Ce Mg alloy with up to five passes—one-pass backward extrusion and four-pass extension—to fabricate the seamless thin-walled tube with an inside diameter of 6.0 mm and a wall thickness of 0.6 mm. The average grain size decreased from 46.3 μm to 8.9 μm at the appropriate deformation temperature of 350 °C with the punch speed of 0.1 mm/s. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM), and the Vickers hardness (HV) tester were utilized to study the phases, microstructure, and hardness evolution. It can be observed that low deformation temperatures (240 °C and 270 °C) and low strain (1 pass extrusion and 1 pass extension) lead to twins that occupy the grains to coordinate deformation, and a slip system was activated with the accumulation of strain. The results of the Vickers hardness test showed that twinning, precipitation of second phases, twinning dynamic recrystallization (TDRX), and work hardening were combined to change the hardness of tubes at 240 °C and 270 °C. The hardness reached 93 HV after the third pass extension without annealing at 350 °C.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662252-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Polymers Vol. 12, No. 12 ( 2020-12-14), p. 2985-
    In: Polymers, MDPI AG, Vol. 12, No. 12 ( 2020-12-14), p. 2985-
    Abstract: Seroin 1 and seroin 2 are abundant in silkworm cocoon silk and show strong antibacterial activities, and thus are thought to protect cocoon silk from damage by bacteria. In this study, we characterized the expression pattern of silkworm seroin 3, and found that seroin 3 is synthesized in the female ovary and secreted into egg to play its roles. After being infected, seroin 1, 2, and 3 were significantly up-regulated in the silkworm. We synthesized the full-length protein of seroin 1, 2, and 3 and their N/C-terminal domain (seroin-N/C), and compared the antimicrobial activities in vitro. All three seroins showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Seroin 2 showed better antibacterial effect than seroin 1 and 3, whereas seroin 1/2/3-N was better than seroin 1/2/3-C. We found that seroin 2-C has stronger peptidoglycan binding ability than seroin 2-N per the ELISA test. The binding sites of seroin 2 with bacteria were blocked by peptidoglycan, which resulted in the loss of the antibacterial activity of seroin 2. Collectively, these findings suggest that seroin 1 and 2 play antibacterial roles in cocoon silk, whereas seroin 3 functions in the eggs. The three silkworm seroins have the same antibacterial mechanism, that is, binding to bacterial peptidoglycan by the C-terminal domain and inhibiting bacterial growth by the N-terminal domain.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Forests, MDPI AG, Vol. 13, No. 12 ( 2022-11-28), p. 2010-
    Abstract: Plants have the capacity to fix CO2 through photosynthesis. To reveal the photosynthetic processes of Quercus acutissima Carruth. and Quercus variabilis Bl., their net photosynthetic rates were quantified during the early and peak growing seasons. To evaluate forest photosynthetic efficiencies, the photosynthetic light response curves of Q. acutissima and Q. variabilis were fitted by the rectangular hyperbola model (RHM), non-rectangular hyperbola model (NHM), and modified rectangular hyperbola model (Ye model). The results revealed the following: (1) All daily variation curves of the net photosynthetic rate, stomatal conductivity, and transpiration rate were single-peaked. The peak times of the Q. acutissima and Q. variabilis’ net photosynthetic rates appeared at 12:00 am during the early growing season and 10:00 am during the peak growing season. (2) The photosynthetic capacities of both Q. acutissima and Q. variabilis during peak growing seasons were higher than during the early growing season. (3) The net photosynthetic rate was found to be positively correlated with stomatal conductivity, the transpiration rate, and photosynthetically active radiation, and it was negatively correlated with the intercellular CO2 concentration. (4) The Ye model provided the best fit for the light response curves of Q. acutissima and Q. variabilis when compared with the rectangular hyperbola and nonrectangular hyperbola models. The photosynthetic performance of Q. acutissima was superior to that of Q. variabilis; thus, it can be employed as a priority tree species in carbon sink forests.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Materials, MDPI AG, Vol. 11, No. 11 ( 2018-11-14), p. 2282-
    Abstract: Mg-Gd-Y-Zn-Zr Mg alloys show excellent performance in high-end manufacturing due to its strength, hardness and corrosion resistance. However, the hot deformation and dynamic recrystallization (DRX) behaviors of Mg-13.5Gd-3.2Y-2.3Zn-0.5Zr were not studied. For this article, hot compression behavior of homogenized high rare-earth (RE) content Mg-13.5Gd-3.2Y-2.3Zn-0.5Zr (wt%) alloy was investigated by using the Gleeble-3500D thermo-simulation test machine under the temperature of 350–500 °C and the strain rate of 0.001–1 s−1. It was found that the high flow stress corresponded to the low temperature and high strain rate, which showed DRX steady state curve during the hot compression. The hot deformation average activation was 263.17 kJ/mol, which was obtained by the analysis of the hyperbolic constitutive equation and the Zener-Hollomon parameter. From observation of the microstructure, it was found that kink deformation of long period stacking ordered (LPSO) phase was one of the important coordination mechanisms of hot deformation at low temperature. The processing map with the strain of 0.5 was established under the basis of dynamic material model (DMM); it described two high power dissipation domains: one appearing in the temperature range of 370–440 °C and the strain rate range of 0.001–0.006 s−1, the other appearing in the temperature range of 465–500 °C and strain rate range of 0.001–0.05 s−1, in which dynamic recrystallization (DRX) mainly ocurred. The highest degree of DRX was 18% from the observation of the metallographic.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...