GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Electronics Vol. 10, No. 5 ( 2021-02-26), p. 545-
    In: Electronics, MDPI AG, Vol. 10, No. 5 ( 2021-02-26), p. 545-
    Abstract: A compact and modular pulse forming network (PFN)-Marx generator with output parameters of 5 GW, 500 kV, and 30 Hz repetition is designed and constructed to produce intense electron beams for the purpose of high-power microwave (HPM) generation in the paper. The PFN-Marx is composed by 22 stages of PFN modules, and each module is formed by three mica capacitors (6 nF/50 kV) connected in parallel. Benefiting from the utilization of mica capacitors with high energy density and a mini-trigger source integrated into the magnetic transformer and the magnetic switch, the compactness of the PFN-Marx system is improved significantly. The structure of the PFN module, the gas switch unit, and the connection between PFN modules and switches are well designed for modular realization. Experimental results show that this generator can deliver electrical pulses with the pulse width of 100 ns and amplitude of 500 kV on a 59-ohm water load at a repetition rate of 30 Hz in burst mode. The PFN-Marx generator is fitted into a cuboid stainless steel case with the length of 80 cm. The ratio of storage energy to volume and the ratio of power to weight of the PFN-Marx generator are calculated to be 6.5 J/L and 90 MW/kg, respectively. Furthermore, utilizing the generator to drive the transit time oscillator (TTO) at a voltage level of 450 kV, a 100 MW microwave pulse with the pulse width of 20 ns is generated.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662127-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Minerals Vol. 10, No. 7 ( 2020-06-30), p. 594-
    In: Minerals, MDPI AG, Vol. 10, No. 7 ( 2020-06-30), p. 594-
    Abstract: An innovative self-designed medium was packed in a bench-scale flotation column to study its influence on the flotation recovery of bauxite. Computational fluid dynamics (CFD) simulation was conducted to reveal the impact of the packing medium on the turbulent characteristics of collection zone in the column. Simulation results show that multilayer packing of the medium divides the collection zone into small units having different turbulent intensities, which is more suitable for flotation separation. The packing medium decreases the turbulence kinetic energy (from 1.08 × 10−2 m2/s2 to 2.1 × 10−3 m2/s2), turbulence eddy dissipation (from 3.71 × 10−2 m2/s3 to 9.8 × 10−3 m2/s3) and axial fluid velocity of fluid in the column. With three layers of packing, the recovery of Al2O3 increased by 2.11% and the aluminum to silicon content ratio of the concentrate improved from 5.16 to 9.72.
    Type of Medium: Online Resource
    ISSN: 2075-163X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2655947-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Sustainability Vol. 14, No. 21 ( 2022-10-27), p. 14019-
    In: Sustainability, MDPI AG, Vol. 14, No. 21 ( 2022-10-27), p. 14019-
    Abstract: Traffic sign detection is a research hotspot in advanced assisted driving systems, given the complex background, light transformation, and scale changes of traffic sign targets, as well as the problems of slow result acquisition and low accuracy of existing detection methods. To solve the above problems, this paper proposes a traffic sign detection method based on a lightweight multiscale feature fusion network. Since a lightweight network model is simple and has fewer parameters, it can greatly improve the detection speed of a target. To learn more target features and improve the generalization ability of the model, a multiscale feature fusion method can be used to improve recognition accuracy during training. Firstly, MobileNetV3 was selected as the backbone network, a new spatial attention mechanism was introduced, and a spatial attention branch and a channel attention branch were constructed to obtain a mixed attention weight map. Secondly, a feature-interleaving module was constructed to convert the single-scale feature map of the specified layer into a multiscale feature fusion map to realize the combined encoding of high-level semantic information and low-level semantic information. Then, a feature extraction base network for lightweight multiscale feature fusion with an attention mechanism based on the above steps was constructed. Finally, a key-point detection network was constructed to output the location information, bias information, and category probability of the center points of traffic signs to achieve the detection and recognition of traffic signs. The model was trained, validated, and tested using TT100K datasets, and the detection accuracy of 36 common categories of traffic signs reached more than 85%, among which the detection accuracy of five categories exceeded 95%. The results showed that, compared with the traditional methods of Faster R-CNN, CornerNet, and CenterNet, traffic sign detection based on a lightweight multiscale feature fusion network had obvious advantages in the speed and accuracy of recognition, significantly improved the detection performance for small targets, and achieved a better real-time performance.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Mathematics, MDPI AG, Vol. 10, No. 15 ( 2022-07-26), p. 2610-
    Abstract: In order to consider both the refining efficiency of the ladle furnace (LF) and the quality of molten steel, the water model experiment is carried out. In this study, the single factor analysis, central composite design principle, response surface methodology, visual analysis of response surface, and multiobjective optimization are used to obtain the optimal arrangement scheme of argon blowing of LF, design the experimental scheme, establish the prediction models of mixing time (MT) and slag eye area (SEA), analyze the comprehensive effects of different factors on MT and SEA, and obtain the optimal process parameters, respectively. The results show that when the identical porous plug radial position is 0.6R and the separation angle is 135°, the mixing behavior is the best. Moreover, the optimized parameter combination is obtained based on the response surface model to simultaneously meet the requirements of short MT and small SEA in the LF refining process. Meanwhile, compared with the predicted values, the errors of MT and SEA for different conditions from the experimental values are 1.3% and 2.1%, 1.3% and 4.2%, 2.5% and 3.4%, respectively, which is beneficial to realizing the modeling of argon bottom blowing in the LF refining process and reducing the interference of human factors.
    Type of Medium: Online Resource
    ISSN: 2227-7390
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704244-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Photonics, MDPI AG, Vol. 10, No. 3 ( 2023-03-06), p. 276-
    Abstract: Spacecraft is severely limited in weight and volume, resulting in a small bending radius of the fiber coil used by IFOG (Interference Fiber Optic Gyroscope). The fiber coil has such a size that the influence of bending on fiber birefringence cannot be ignored. In this paper, we research magnetic-induced errors of small-sized IFOG working in low orbit space. Firstly, we use the Jones matrix to analyze the effects of radial magnetic field and axial magnetic field on IFOG. Secondly, we establish a three-dimensional model for the radial magnetic-induced errors and magnetic-induced errors of minor radius fiber coil. Using the finite element method, we analyze the magnetic-induced error between different levels of the fiber coil. Combined with the birefringence distribution of the minor radius fiber coil, an accurate three-dimensional magnetic-induced error model is established. Thirdly, in the experiment, we design the magnetic-induced error test platform that includes the Fluke standard current source, transconductance amplifier, and Helmholtz coil. The experimental results show that, compared with the traditional calculation method, the three-dimensional magnetic-induced error model reduces the RMSE (Root Mean Square Error) of the radial magnetic field by 56.9% and the RMSE of the axial magnetic field by 35.7%, respectively.
    Type of Medium: Online Resource
    ISSN: 2304-6732
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2770002-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Genes, MDPI AG, Vol. 13, No. 5 ( 2022-04-28), p. 788-
    Abstract: Alfalfa (Medicago sativa L.) is a perennial leguminous forage cultivated globally. Fusarium spp.-induced root rot is a chronic and devastating disease affecting alfalfa that occurs in most production fields. Studying the disease resistance regulatory network and investigating the key genes involved in plant–pathogen resistance can provide vital information for breeding alfalfa that are resistant to Fusarium spp. In this study, a resistant and susceptible clonal line of alfalfa was inoculated with Fusarium proliferatum L1 and sampled at 24 h, 48 h, 72 h, and 7 d post-inoculation for RNA-seq analysis. Among the differentially expressed genes (DEGs) detected between the two clonal lines at the four time points after inoculation, approximately 81.8% were detected at 24 h and 7 d after inoculation. Many DEGs in the two inoculated clonal lines participated in PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) mechanisms. In addition, transcription factor families such as bHLH, SBP, AP2, WRKY, and MYB were detected in response to infection. These results are an important supplement to the few existing studies on the resistance regulatory network of alfalfa against Fusarium root rot and will help to understand the evolution of host–pathogen interactions.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 12 ( 2022-06-16), p. 6721-
    Abstract: Stigma color is an important morphological trait in many flowering plants. Visual observations in different field experiments have shown that a green stigma in melons is more attractive to natural pollinators than a yellow one. In the current study, we evaluated the characterization of two contrasted melon lines (MR-1 with a green stigma and M4-7 with a yellow stigma). Endogenous quantification showed that the chlorophyll and carotenoid content in the MR-1 stigmas was higher compared to the M4-7 stigmas. The primary differences in the chloroplast ultrastructure at different developmental stages depicted that the stigmas of both melon lines were mainly enriched with granum, plastoglobulus, and starch grains. Further, comparative transcriptomic analysis was performed to identify the candidate pathways and genes regulating melon stigma color during key developmental stages (S1–S3). The obtained results indicated similar biological processes involved in the three stages, but major differences were observed in light reactions and chloroplast pathways. The weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) uncovered a “black” network module (655 out of 5302 genes), mainly corresponding to light reactions, light harvesting, the chlorophyll metabolic process, and the chlorophyll biosynthetic process, and exhibited a significant contribution to stigma color. Overall, the expression of five key genes of the chlorophyll synthesis pathway—CAO (MELO03C010624), CHLH (MELO03C007233), CRD (MELO03C026802), HEMA (MELO03C011113), POR (MELO03C016714)—were checked at different stages of stigma development in both melon lines using quantitative real time polymerase chain reaction (qRT-PCR). The results exhibited that the expression of these genes gradually increased during the stigma development of the MR-1 line but decreased in the M4-7 line at S2. In addition, the expression trends in different stages were the same as RNA-seq, indicating data accuracy. To sum up, our research reveals an in-depth molecular mechanism of stigma coloration and suggests that chlorophyll and related biological activity play an important role in differentiating melon stigma color.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  International Journal of Environmental Research and Public Health Vol. 20, No. 3 ( 2023-01-31), p. 2603-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 20, No. 3 ( 2023-01-31), p. 2603-
    Abstract: Similar to the problems surrounding carbon transfers that exist in international trade, there are severe carbon emission headaches in regional industrial systems within countries. It is essential for emission reduction control and regional industrial restructuring to clarify the relationship of carbon emissions flows between industrial sectors and identify key carbon-emitting industrial sectors. Supported by the input–output model (I-O model) and social network analysis (SNA), this research adopts input–output tables (2017), energy balance sheets (2021) and the energy statistics yearbooks (2021) of the three Chinese provinces of Hei-Ji-Liao to construct an Embodied carbon emission transfer network (ECETN) and determine key carbon-emitting industrial sectors with a series of complex network measurement indicators and analysis methods. The key abatement control pathways are obtained based on the flow relationships between the chains in the industrial system. The results demonstrate that the ECETNs in all three provinces of Hei-Ji-Liao are small-world in nature with scale-free characteristics (varying according to the power function). The key carbon emission industry sectors in the three provinces are identified through centrality, influence, aggregation and diffusion, comprising coal mining, the chemical industry, metal products industry, machinery manufacturing and transportation in Liaoning Province; coal mining, non-metal mining, non-metal products, metal processing and the electricity industry in Jilin Province; and agriculture, metal processing and machinery manufacturing in Heilongjiang. Additionally, key emission reduction control pathways in the three provinces are also identified based on embodied carbon emission flow relationships between industry sectors. Following the above findings, corresponding policy recommendations are proposed to tackle the responsibility of carbon reduction among industrial sectors in the province. Moreover, these findings provide some theoretical support and policy considerations for policymakers.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancers, MDPI AG, Vol. 11, No. 9 ( 2019-08-30), p. 1272-
    Abstract: Cancer-associated cachexia (cancer cachexia) is a major contributor to the modality and mortality of a wide variety of solid tumors. It is estimated that cachexia inflicts approximately ~60% of all cancer patients and is the immediate cause of ~30% of all cancer-related death. However, there is no established treatment of this disorder due to the poor understanding of its underlying etiology. The key manifestations of cancer cachexia are systemic inflammation and progressive loss of skeletal muscle mass and function (muscle wasting). A number of inflammatory cytokines and members of the TGFβ superfamily that promote muscle protein degradation have been implicated as mediators of muscle wasting. However, clinical trials targeting some of the identified mediators have not yielded satisfactory results. Thus, the root cause of the muscle wasting associated with cancer cachexia remains to be identified. This review focuses on recent progress of laboratory studies in the understanding of the molecular mechanisms of cancer cachexia that centers on the role of systemic activation of Toll-like receptor 4 (TLR4) by cancer-released Hsp70 and Hsp90 in the development and progression of muscle wasting, and the downstream signaling pathways that activate muscle protein degradation through the ubiquitin–proteasome and the autophagy–lysosome pathways in response to TLR4 activation. Verification of these findings in humans could lead to etiology-based therapies of cancer cachexia by targeting multiple steps in this signaling cascade.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Sustainability, MDPI AG, Vol. 15, No. 19 ( 2023-09-22), p. 14055-
    Abstract: The continuous growth of interior decoration activities has caused a massive consumption of energy and materials, which has contributed to a large amount of carbon emissions in the construction sector. The carbon emissions of building decoration were overlooked in previous studies. Hence, the life cycle assessment (LCA) approach was employed to build a life cycle carbon emissions model for building decoration. An office building was selected to verify the availability. The results show that the carbon emissions intensity of the decoration project was 254.5 kg CO2 eq/m2. The operation stage was the most crucial carbon emissions contributor in the life cycle of building decoration, accounting for 49.8%; followed by the materials embodied impact stage, which contributed 36.3%; while the remaining three stages, namely, the decoration, transportation, and end-of-life stage, had less carbon emissions, accounting for 6.8%, 5.3%, and 1.8%. Improving the performance of inorganic materials, optimizing transportation routes and energy structure, and dismantling plan optimization can reduce carbon emissions. The findings of this study provide a theoretical basis and fundamental data for carbon emissions reduction and sustainable development strategies for building decoration.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...