GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (25)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 24 ( 2022-12-08), p. 16475-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 24 ( 2022-12-08), p. 16475-
    Abstract: Drinking water is an important natural resource. For many people worldwide, especially in developing countries, access to safe drinking water is still a dream. An increasing number of human activities and industrialization have caused various physical, chemical, and biological pollutants to enter water bodies, affecting human health. Water pollutants contain a vast number of additives, such as perfluorinated chemicals, polybrominated diphenyl ethers, phthalate, nanomaterials, insecticides, microcystins, heavy metals, and pharmacologies. In this work, we aim to explore the potential relationship between water pollutants and human diseases. Here, we explored an integrative approach to identify genes, biological processes, molecular functions, and diseases linked to exposure to these water pollutants. These processes and functions affected by water pollutants are related to many diseases, including colonic neoplasms, breast neoplasms, hepatitis B, bladder cancer, and human cytomegalovirus infection. In addition, further analysis revealed the genes that play a key role in the human diseases induced by water pollutants. Therefore, conducting an integrative toxicogenomic analysis of water pollutants is more appropriate for evaluating the potential effects of water pollutants on human health.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 12, No. 18 ( 2020-09-18), p. 3049-
    Abstract: The tassel development status and its branch number in maize flowering stage are the key phenotypic traits to determine the growth process, pollen quantity of different maize varieties, and detasseling arrangement for seed maize production fields. Rapid and accurate detection of tassels is of great significance for maize breeding and seed production. However, due to the complex planting environment in the field, such as unsynchronized growth stage and tassels vary in size and shape caused by varieties, the detection of maize tassel remains challenging problem, and the existing methods also cannot distinguish the early tassels. In this study, based on the time series unmanned aerial vehicle (UAV) RGB images with maize flowering stage, we proposed an algorithm for automatic detection of maize tassels which is suitable for complex scenes by using random forest (RF) and VGG16. First, the RF was used to segment UAV images into tassel regions and non-tassel regions, and then extracted the potential tassel region proposals by morphological method; afterwards, false positives were removed through VGG16 network with the ratio of training set to validation set was 7:3. To demonstrate the performance of the proposed method, 50 plots were selected from UAV images randomly. The precision, recall rate and F1-score were 0.904, 0.979 and 0.94 respectively; 50 plots were divided into early, middle and late tasseling stages according to the proportion of tasseling plants and the morphology of tassels. The result of tassels detection was late tasseling stage 〉 middle tasseling stage 〉 early tasseling stage, and the corresponding F1-score were 0.962, 0.914 and 0.863, respectively. It was found that the model error mainly comes from the recognition of leaves vein and reflective leaves as tassels. Finally, to show the morphological characteristics of tassel directly, we proposed an endpoint detection method based on the tassel skeleton, and further extracted the tassel branch number. The method proposed in this paper can well detect tassels of different development stages, and support large scale tassels detection and branch number extraction.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 11 ( 2020-06-02), p. 3993-
    Abstract: Osmotin-like proteins (OLPs) mediate defenses against abiotic and biotic stresses and fungal pathogens in plants. However, no OLPs have been functionally elucidated in poplar. Here, we report an osmotin-like protein designated PdOLP1 from Populus deltoides (Marsh.). Expression analysis showed that PdOLP1 transcripts were mainly present in immature xylem and immature phloem during vascular tissue development in P. deltoides. We conducted phenotypic, anatomical, and molecular analyses of PdOLP1-overexpressing lines and the PdOLP1-downregulated hybrid poplar 84K (Populus alba × Populus glandulosa) (Hybrid poplar 84K PagOLP1, PagOLP2, PagOLP3 and PagOLP4 are highly homologous to PdOLP1, and are downregulated in PdOLP1-downregulated hybrid poplar 84K). The overexpression of PdOLP1 led to a reduction in the radial width and cell layer number in the xylem and phloem zones, in expression of genes involved in lignin biosynthesis, and in the fibers and vessels of xylem cell walls in the overexpressing lines. Additionally, the xylem vessels and fibers of PdOLP1-downregulated poplar exhibited increased secondary cell wall thickness. Elevated expression of secondary wall biosynthetic genes was accompanied by increases in lignin content, dry weight biomass, and carbon storage in PdOLP1-downregulated lines. A PdOLP1 coexpression network was constructed and showed that PdOLP1 was coexpressed with a large number of genes involved in secondary cell wall biosynthesis and wood development in poplar. Moreover, based on transcriptional activation assays, PtobZIP5 and PtobHLH7 activated the PdOLP1 promoter, whereas PtoBLH8 and PtoWRKY40 repressed it. A yeast one-hybrid (Y1H) assay confirmed interaction of PtoBLH8, PtoMYB3, and PtoWRKY40 with the PdOLP1 promoter in vivo. Together, our results suggest that PdOLP1 is a negative regulator of secondary wall biosynthesis and may be valuable for manipulating secondary cell wall deposition to improve carbon fixation efficiency in tree species.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Energies, MDPI AG, Vol. 13, No. 3 ( 2020-02-03), p. 644-
    Abstract: Due to the unique adsorption and desorption characteristics of coal, coal reservoir permeability changes dynamically during coalbed methane (CBM) development. Coal reservoirs can be classified using a permeability dynamic characterization in different production stages. In the single-phase water flow stage, four demarcating pressures are defined based on the damage from the effective stress on reservoir permeability. Coal reservoirs are classified into vulnerable, alleviative, and invulnerable reservoirs. In the gas desorption stage, two demarcating pressures are used to quantitatively characterize the recovery properties of permeability based on the recovery effect of the matrix shrinkage on permeability, namely the rebound pressure (the pressure corresponding to the lowest permeability) and recovery pressure (the pressure when permeability returns to initial permeability). Coal reservoirs are further classified into recoverable and unrecoverable reservoirs. The physical properties and influencing factors of these demarcating pressures are analyzed. Twenty-six wells from the Shizhuangnan Block in the southern Qinshui Basin of China were examined as a case study, showing that there is a significant correspondence between coal reservoir types and CBM well gas production. This study is helpful for identifying geological conditions of coal reservoirs as well as the productivity potential of CBM wells.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Agronomy, MDPI AG, Vol. 12, No. 10 ( 2022-10-05), p. 2411-
    Abstract: Studies of traits related to nitrogen (N)-use efficiency (NUE) in wheat cultivars are important for breeding N-efficient cultivars. Canopy structure has a major effect on NUE, as it determines the distribution of light and N. However, the mechanism by which canopy structure affects the distribution of light and N within the canopy remains unclear. The N-efficient winter wheat varieties YM49 and ZM27 and N-inefficient winter wheat varieties XN509 and AK58 were grown in the field under two N levels. Light transmittance was enhanced, and the leaf area index and photosynthetically active radiation were lower in the N-efficient cultivar population, which was characterized by moderately sized flag leaves, a low frequency of canopy leaf curling, a low light attenuation coefficient (KL), and high plant compactness. Reductions in the amount of shade increased the distribution of light and N resources to the middle and lower layers. The photosynthetic rate, transpiration rate, instant water-use efficiency, and canopy photosynthetic NUE were higher, N remobilization of the upper and middle canopy leaves was reduced, and the leaf N content was high in the N-efficient cultivars. A higher ratio of the N extinction coefficient (KN) to KL reflects the assimilation ability of the N-efficient winter wheat cultivars, resulting in improved canopy structure and distribution of light and N, higher 1000-grain weight and grain yield, and significantly increased light and NUE. An improved match between gradients of light and N in the leaf canopy promotes balanced C and N metabolism and reduces energy and nutrient losses. This should be a goal when breeding N-efficient wheat cultivars and implementing tillage regimes.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Photonics, MDPI AG, Vol. 10, No. 1 ( 2023-01-06), p. 62-
    Abstract: A compact, orthogonally polarized, gain-switched a-cut Ho:LuLiF4 laser with intra-cavity pumping by a self-Q-switched Tm:YAP laser is demonstrated here for the first time. The π-polarization laser at 2052 nm and σ-polarization laser at 2066 nm were experimentally observed with the maximum output power values of 299 mW and 126 mW, respectively, and the two polarization directions were always kept mutually orthogonal as the pump power increased. The ratio of the output power between the two orthogonal polarization lasers was nearly 1:1 at a pump power of 18.4 W. The minimum pulse width of the Ho:LLF laser was 326 ns, the maximum repetition rate was 24 kHz, and the maximum average energy was 28 μJ.
    Type of Medium: Online Resource
    ISSN: 2304-6732
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2770002-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Buildings, MDPI AG, Vol. 13, No. 2 ( 2023-01-30), p. 381-
    Abstract: With the implementation of clean heating and the outbreak of COVID-19, stratum ventilation with both energy-saving and healthy indoor environments has become a research hotspot. Room size dimension is one of the critical factors affecting the air distribution, thermal comfort, and ventilation performance of space heating, which is still a research blank at present. This study determined the applicable room size dimension of stratum ventilation for space heating by using a multi-criteria analytic hierarchy process-entropy weight (AHP-EW) model. A computational fluid dynamics (CFD) simulation verified by experiments was conducted. To investigate the ventilation performance of different room sizes in energy utilization and thermal comfort, airflow distribution, ventilation efficiency (Et), dimensionless temperature, effective ventilation temperature (EDT), air distribution performance index (ADPI), and predicted mean vote (PMV) were calculated. The multi-criteria AHP-EW method is used to evaluate every case comprehensively. The results show that the maximum room size obtained by multi-criteria APH-EW is 6 m, and considering the single criteria, the suitable height for stratum ventilation for heating is below 5.7 m. The data obtained in this paper can be used as a reference for further study on the application of stratum ventilation and heating in the future.
    Type of Medium: Online Resource
    ISSN: 2075-5309
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661539-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Entropy Vol. 24, No. 6 ( 2022-05-28), p. 763-
    In: Entropy, MDPI AG, Vol. 24, No. 6 ( 2022-05-28), p. 763-
    Abstract: This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT)-enabled relay networks with the decode-and-forward relaying protocol, where the effect of the energy triggering threshold at the relay on the system performance is considered. The closed-form expressions of the system outage probability and throughput are derived in Rician channel fading. Monte Carlo Simulation method is used to verify the accuracy of the derived closed-form expressions. The effects of some system parameters on the system performances are discussed via simulations, which show that the system outage probability increases with the increase of the minimum transmission rate required by the users and also decreases with the increase of the energy conversion efficiency. Besides, the system throughput increaseswith the increment of the transmit power of the source node, as well as the energy conversion efficiency. Additionally, the outage performance of the system with the equal two-hop distance is better than that of the system with unequal two-hop distance.
    Type of Medium: Online Resource
    ISSN: 1099-4300
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2014734-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Sustainability Vol. 15, No. 14 ( 2023-07-21), p. 11356-
    In: Sustainability, MDPI AG, Vol. 15, No. 14 ( 2023-07-21), p. 11356-
    Abstract: In order to formulate a reasonable water input model for cotton fields in southern Xinjiang for scientific and rational fertilization, to reduce soil carbon leaching, and to improve soil carbon sequestration capacity, an undisturbed soil column leaching test was used to simulate the current field management method in the study area. Two methods, drip irrigation and flood irrigation, were set up, and three irrigation and three nitrogen fertilizer levels were used to carry out the undisturbed soil column leaching test. The results showed that the amount and mode of water and nitrogen input affected the distribution and leaching loss of organic carbon and inorganic carbon in the soil. When the nitrogen application rate increased from 270 kg·hm−2 to 450 kg·hm−2, the leaching loss of soluble organic carbon and soluble inorganic carbon increased significantly. When the water input increased from 6000 m3·hm−2 to 9000 m3·hm−2, the leaching loss of DOC and DIC increased significantly. The carbon leaching loss under drip irrigation was higher than that under flood irrigation. The leaching rates of DOC and DIC were fastest under the conditions of high water (9000 m3·hm−2) and high fertilizer (450 kg·hm−2). This shows that water and nitrogen input and irrigation methods are important factors affecting soil carbon leaching. In the case of excessive water input, long-term high-frequency irrigation is the main factor affecting carbon leaching.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmosphere, MDPI AG, Vol. 13, No. 5 ( 2022-04-21), p. 659-
    Abstract: Atmospheric peroxides, especially hydrogen peroxide (H2O2), are essential oxidants. The peroxide concentration is closely related to the extent of OH radicals and the O3 cycle in the tropospheric atmospheric chemistry. However, only a few studies have investigated their atmospheric concentrations in China because of inadequacies in the measurement techniques or higher costs of analytical instruments. Therefore, it is essential to design a suitable analysis method of peroxides with higher sensitivity, lower detection limit, and low cost. In view of that, this study investigated the optimum analysis conditions of two H2O2 analytical techniques: the high-performance liquid chromatography (HPLC) with fluorescence detection using two-enzyme catalysis of horseradishperoxidase (HRP method) and Hemin (Hemin method). Furthermore, these two analysis methods were systematically compared in terms of detection limit, calibration curve, precision, accuracy, and applicability for the first time. The findings showed that the HRP method had a lower detection limit, higher sensitivity, and better applicability for detecting H2O2 and methyl hydroperoxide (MHP) than the Hemin method. Moreover, the HRP method is better suitable for H2O2 and MHP detection, which requires low detection limits and high sensitivity. Besides this, the Hemin method is inexpensive and is more suitable for detecting hydroxyl alkyl peroxides (C ≥ 3). The atmospheric concentrations (average) of H2O2 and MHP were 0.60 ± 0.37 ppb and 0.081 ± 0.039 ppb, respectively, as determined by the HRP method. Importantly, atmospheric peroxide concentrations were higher on sunny days than on cloudy days in Beijing in September 2016. H2O2 concentrations showed a diurnal variation with the lowest value in the morning and two peaks at 13:00–17:00. In contrast, MHP concentrations were lowest in the morning and highest after 17:00. Photochemical reactions were responsible for the production of H2O2 and MHP. The reactions of O3 and olefins emitted by motor vehicles also caused H2O2 concentration to increase during the evening rush hour.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...