GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (1,308)
Material
Publisher
  • MDPI AG  (1,308)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2017
    In:  Polymers Vol. 9, No. 10 ( 2017-10-17), p. 515-
    In: Polymers, MDPI AG, Vol. 9, No. 10 ( 2017-10-17), p. 515-
    Abstract: An iron(III) complex of tetradentate N,N′-disubstituted bis(aminophenoxide) (designated as salan, a saturated version of the corresponding salen ligand) with a sterically hindered organic base anchored on the ligand framework, can selectively mediate the conversion of carbonyl sulfide to sulfur-containing polymers by the copolymerization with epoxides. This single-site catalyst exhibits broad substrate scope, and the resultant copolymers have completely alternating structures. In addition, this catalyst is efficient in producing diblock copolymers, suggesting a living polymerization nature.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Entropy Vol. 25, No. 2 ( 2023-02-04), p. 294-
    In: Entropy, MDPI AG, Vol. 25, No. 2 ( 2023-02-04), p. 294-
    Abstract: Currently, the most widely used protocol for the transportation layer of computer networks for reliable transportation is the Transmission Control Protocol (TCP). However, TCP has some problems such as high handshake delay, head-of-line (HOL) blocking, and so on. To solve these problems, Google proposed the Quick User Datagram Protocol Internet Connection (QUIC) protocol, which supports 0-1 round-trip time (RTT) handshake, a congestion control algorithm configuration in user mode. So far, the QUIC protocol has been integrated with traditional congestion control algorithms, which are not efficient in numerous scenarios. To solve this problem, we propose an efficient congestion control mechanism on the basis of deep reinforcement learning (DRL), i.e., proximal bandwidth-delay quick optimization (PBQ) for QUIC, which combines traditional bottleneck bandwidth and round-trip propagation time (BBR) with proximal policy optimization (PPO). In PBQ, the PPO agent outputs the congestion window (CWnd) and improves itself according to network state, and the BBR specifies the pacing rate of the client. Then, we apply the presented PBQ to QUIC and form a new version of QUIC, i.e., PBQ-enhanced QUIC. The experimental results show that the proposed PBQ-enhanced QUIC achieves much better performance in both throughput and RTT than existing popular versions of QUIC, such as QUIC with Cubic and QUIC with BBR.
    Type of Medium: Online Resource
    ISSN: 1099-4300
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2014734-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Sensors, MDPI AG, Vol. 19, No. 9 ( 2019-05-02), p. 2055-
    Abstract: The hydropower generator unit (HGU) is a vital piece of equipment for frequency and peaking modulation in the power grid. Its vibration signal contains a wealth of information and status characteristics. Therefore, it is important to predict the vibration tendency of HGUs using collected real-time data, and achieve predictive maintenance as well. In previous studies, most prediction methods have only focused on enhancing the stability or accuracy. However, it is insufficient to consider only one criterion (stability or accuracy) in vibration tendency prediction. In this paper, an intelligence vibration tendency prediction method is proposed to simultaneously achieve strong stability and high accuracy, where vibration signal preprocessing, feature selection and prediction methods are integrated in a multi-objective optimization framework. Firstly, raw sensor signals are decomposed into several modes by empirical wavelet transform (EWT). Subsequently, the refactored modes can be obtained by the sample entropy-based reconstruction strategy. Then, important input features are selected using the Gram-Schmidt orthogonal (GSO) process. Later, the refactored modes are predicted through kernel extreme learning machine (KELM). Finally, the parameters of GSO and KELM are synchronously optimized by the multi-objective salp swarm algorithm. A case study and analysis of the mixed-flow HGU data in China was conducted, and the results show that the proposed model performs better in terms of predicting stability and accuracy.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 2 ( 2022-01-11), p. 771-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 2 ( 2022-01-11), p. 771-
    Abstract: Urban agglomerations have gradually formed in different Chinese cities, exerting great pressure on the ecological environment. Ecosystem health is an important index for the evaluation of the sustainable development of cities, but it has rarely been used for urban agglomerations. In this study, the ecosystem health in the middle reaches of the Yangtze River Urban Agglomeration was assessed using the ecosystem vigor, organization, resilience, and services framework at the county scale. A GeoDetector was used to determine the effects of seven factors on ecosystem health. The results show that: (1) The spatial distribution of ecosystem health differs significantly. The ecosystem health in the centers of Wuhan Metropolis, Changsha–Zhuzhou–Xiangtan City Group, and Poyang Lake City Group is significantly lower than in surrounding areas. (2) Temporally, well-level research units improve gradually; research units with relatively weak levels remain relatively stable. (3) The land use degree is the main factor affecting ecosystem health, with interactions between the different factors. The effects of these factors on ecosystem health are enhanced or nonlinear; (4) The effect of the proportion of construction land on ecosystem health increases over time. The layout used in urban land use planning significantly affects ecosystem health.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Environments, MDPI AG, Vol. 6, No. 4 ( 2019-04-03), p. 42-
    Abstract: PM2.5 pollution is of great concern in China due to its adverse health effects. Many diseases have been proven to be associated with PM2.5 components, but the effects of chemical characteristics of PM2.5 on toxicological properties, especially in different human organs, are poorly understood. In this study, two seasonal PM2.5 samples (summer and winter) were collected in Nanjing, and their chemical compositions (heavy metals, water-soluble ions, organic carbon (OC), and elemental carbon (EC)) were analyzed. Human lung epithelial carcinoma cells (A549), human hepatocellular liver carcinoma cells (HepG2), and human neuroblastoma cells (Sh-Sy5y) were employed to evaluate the toxicological properties of the collected PM2.5. The results showed that the average mass concentrations of PM2.5 were lower in summer (51.3 ± 21.4 μg/m3) than those in winter (62.1 ± 21.5 μg/m3). However, the mass fractions of heavy metals, OC, and EC exhibited an opposite seasonal difference. Among all tested fractions, water-soluble ions were the major compositions of particles in both summer and winter, especially the secondary ions (SO42−, NO3− and NH4+). Besides, the ratio of OC/EC in PM2.5 was greater than two, indicating serious secondary pollution in this area. The NO3–/SO42− ratio ( 〈 1) suggested that fixed sources made important contributions. The toxicological results showed that PM2.5 in the summer and winter significantly inhibited cell viability (p 〈 0.01) and induced intracellular reactive oxygen species (ROS) production (p 〈 0.01). Moreover, the viability inhibition in A549, Sh-Sy5y, and HepG2 cells was more prominent in summer, especially at high PM2.5 (400 μg/mL) (p 〈 0.05), and the induction of reactive oxygen species (ROS) in A549 and Sh-Sy5y cells was also more evident in summer. Such seasonal differences might be related to the variations of PM2.5 components.
    Type of Medium: Online Resource
    ISSN: 2076-3298
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2777960-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Crystals, MDPI AG, Vol. 10, No. 4 ( 2020-04-06), p. 275-
    Abstract: The formation of CaCO3 crystals on the cathode surface and the scale-inhibition performance of scale inhibitor 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on the cathode surface were studied by methods of solution analysis, gravimetric analysis, SEM, FTIR, and XRD techniques. They were then compared with the results of the formation and suppression of CaCO3 crystals in aqueous solution. PBTCA had a good solution-scale-inhibition performance and good lattice-distortion effects on CaCO3 crystals in solution, which could change the CaCO3 from calcite to vaterite and aragonite crystals. The solution-scale-inhibition efficiency exceeded 97% when the PBTCA concentration reached 8 mg/L. Under cathodic polarization conditions, the surface-scale-inhibition efficiency of the cathode and solution-scale-inhibition efficiency near the cathode surface both exceed 97% at polarization potential of −1V. The addition of PBTCA significantly reduced the amount of CaCO3 crystals formed on the cathode surface and had good surface and solution-scale-inhibition effect. However, the lattice-distortion effect of PBTCA on CaCO3 crystals disappeared on the cathode surface, and the resulting CaCO3 contained only calcite crystals. The high-scale-inhibition effect of PBTCA under cathodic polarization was mainly due to the inhibition of the formation of calcium carbonate crystals by PBTCA, and not because of the lattice distortion of CaCO3 crystals.
    Type of Medium: Online Resource
    ISSN: 2073-4352
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2661516-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Nanomaterials Vol. 10, No. 6 ( 2020-05-29), p. 1046-
    In: Nanomaterials, MDPI AG, Vol. 10, No. 6 ( 2020-05-29), p. 1046-
    Abstract: The corrosion behavior of brass in TiO2 and Al2O3 nanofluids using a simulated cooling water (SCW) as the base solution and sodium dodecyl benzene sulfonate (SDBS) as the dispersant was studied by electrochemical measurements and surface analysis in this paper. It was found that SDBS could be adsorbed on the brass surface to form a protective film and have a corrosion inhibition effect on brass in SCW. In the SCW-SDBS-TiO2 nanofluid, some negatively charged TiO2 nanoparticles were attached to the brass surface and no obvious SDBS adsorption film was found, and the SDBS in this nanofluid had almost no corrosion inhibition on brass. In the SCW-SDBS-Al2O3 nanofluid, the brass surface was covered by a uniformly distributed SDBS film containing some Al2O3 nanoparticles which were positively charged, and the corrosion inhibition of brass was significantly improved in this nanofluid. It is concluded that the adsorption of SDBS on the brass surface in nanofluids is related to the charge status of the nanoparticles, which makes brass have different corrosion resistance in various nanofluids.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nanomaterials, MDPI AG, Vol. 13, No. 3 ( 2023-01-25), p. 490-
    Abstract: Thermal contact resistance between the microprocessor chip and the heat sink has long been a focus of thermal management research in electronics. Thermally conductive gel, as a thermal interface material for efficient heat transfer between high-power components and heat sinks, can effectively reduce heat accumulation in electronic components. To reduce the interface thermal resistance of thermally conductive gel, hexagonal boron nitride and graphene oxide were hybridized with a low-melting-point alloy in the presence of a surface modifier, humic acid, to obtain a hybrid filler. The results showed that at the nanoscale, the low-melting-point alloy was homogeneously composited and encapsulated in hexagonal boron nitride and graphene oxide, which reduced its melting range. When the temperature reached the melting point of the low-melting-point alloy, the hybrid powder exhibited surface wettability. The thermal conductivity of the thermally conductive gel prepared with the hybrid filler increased to 2.18 W/(m·K), while the corresponding thermal contact resistance could be as low as 0.024 °C/W. Furthermore, the thermal interface material maintained its excellent electric insulation performance, which is necessary for electronic device applications.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecules, MDPI AG, Vol. 25, No. 6 ( 2020-03-19), p. 1409-
    Abstract: Coxsackievirus B3 (CVB3) is the most common cause of acute and chronic viral myocarditis, primarily in children, while human adenovirus infections represent a significant cause of morbidity and mortality worldwide, in people of all ages. A series of novel 2-benzoxyl-phenylpyridine derivatives were evaluated for their potential antiviral activities against CVB3 and adenovirus type 7 (ADV7). Preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on both CVB3 and ADV7 viruses; they could effectively inhibit virus-induced cytopathic effects, reduce viral progeny yields, and had similar or superior antiviral activities compared with the control drug, ribavirin. Further, these compounds targeted the early stages of CVB3 replication in cells, including viral RNA replication and protein synthesis, rather than inactivating the virus directly, inhibiting virus adsorption/entry, or affecting viral release from cells. Our data demonstrate that the tested 2-benzoxyl-phenylpyridine derivatives are effective inhibitors of CVB3 and ADV7, raising the possibility that these compounds might be feasible candidates for anti-viral agents.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Nanomaterials Vol. 13, No. 5 ( 2023-02-23), p. 829-
    In: Nanomaterials, MDPI AG, Vol. 13, No. 5 ( 2023-02-23), p. 829-
    Abstract: The effects of charging on the magnetic anisotropy energy (MAE) of rhenium atom in nitrogenized-divacancy graphene (Re@NDV) are investigated using density functional theory (DFT) calculations. High-stability and large MAE of 71.2 meV are found in Re@NDV. The more exciting finding is that the magnitude of MAE of a system can be tuned by charge injection. Moreover, the easy magnetization direction of a system may also be controlled by charge injection. The controllable MAE of a system is attributed to the critical variation in dz2 and dyz of Re under charge injection. Our results show that Re@NDV is very promising in high-performance magnetic storage and spintronics devices.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...