GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (7)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Energies Vol. 12, No. 16 ( 2019-08-09), p. 3066-
    In: Energies, MDPI AG, Vol. 12, No. 16 ( 2019-08-09), p. 3066-
    Abstract: A combined numerical and experimental method study was performed to detect the inner flow state for a type of centrifugal pump. It was found that the inlet attack angles of blades in an impeller have a great influence on the flow instabilities in a centrifugal pump. The mechanism of the rotating stall in the impeller channel was explained. Meanwhile, flow state identification with vibration (FSIV) was proposed to detect the flow instabilities in a centrifugal pump. The relationship between the external vibration and the inner flow state has been established by FSIV. The characteristics and mechanism of the vibration produced by the flow instabilities in a centrifugal pump were investigated. It was found that the hump, the rotating stall, the backflow, the occurrence of unstable flow, and the cavitation in the centrifugal pump can be effectively detected by applying the vibration signals, which helps to obtain safe and steady operating conditions for the system.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Sensors Vol. 22, No. 15 ( 2022-08-01), p. 5742-
    In: Sensors, MDPI AG, Vol. 22, No. 15 ( 2022-08-01), p. 5742-
    Abstract: Improving the temperature prediction accuracy for subgrades in seasonally frozen regions will greatly help improve the understanding of subgrades’ thermal states. Due to the nonlinearity and non-stationarity of the temperature time series of subgrades, it is difficult for a single general neural network to accurately capture these two characteristics. Many hybrid models have been proposed to more accurately forecast the temperature time series. Among these hybrid models, the CEEMDAN-LSTM model is promising, thanks to the advantages of the long short-term memory (LSTM) artificial neural network, which is good at handling complex time series data, and its combination with the broad applicability of the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) in the field of signal decomposition. In this study, by performing empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and CEEMDAN on temperature time series, respectively, a hybrid dataset is formed with the corresponding time series of volumetric water content and frost heave, and finally, the CEEMDAN-LSTM model is created for prediction purposes. The results of the performance comparisons between multiple models show that the CEEMDAN-LSTM model has the best prediction performance compared to other decomposed LSTM models because the composition of the hybrid dataset improves predictive ability, and thus, it can better handle the nonlinearity and non-stationarity of the temperature time series data.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 24 ( 2022-12-10), p. 15679-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 24 ( 2022-12-10), p. 15679-
    Abstract: Some cephalopods (squids, octopuses, and cuttlefishes) produce dynamic structural colors, for camouflage or communication. The key to this remarkable capability is one group of specialized cells called iridocytes, which contain aligned membrane-enclosed platelets of high-reflective reflectins and work as intracellular Bragg reflectors. These reflectins have unusual amino acid compositions and sequential properties, which endows them with functional characteristics: an extremely high reflective index among natural proteins and the ability to answer various environmental stimuli. Based on their unique material composition and responsive self-organization properties, the material community has developed an impressive array of reflectin- or iridocyte-inspired optical systems with distinct tunable reflectance according to a series of internal and external factors. More recently, scientists have made creative attempts to engineer mammalian cells to explore the function potentials of reflectin proteins as well as their working mechanism in the cellular environment. Progress in wide scientific areas (biophysics, genomics, gene editing, etc.) brings in new opportunities to better understand reflectins and new approaches to fully utilize them. The work introduced the composition features, biochemical properties, the latest developments, future considerations of reflectins, and their inspiration applications to give newcomers a comprehensive understanding and mutually exchanged knowledge from different communities (e.g., biology and material).
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nanomaterials, MDPI AG, Vol. 12, No. 11 ( 2022-05-31), p. 1887-
    Abstract: The spin–orbit torques (SOTs) in the heavy metal (HM)/ferromagnetic metal (FM) structure hold promise for next-generation low-power and high-density spintronic memory and logic applications. For the SOT switching of a perpendicular magnetization, an external magnetic field is inevitable for breaking the mirror symmetry, which is not practical for high-density nanoelectronics applications. In this work, we study the current-induced field-free SOT switching and SOT perpendicular effective field (Hzeff) in a variety of laterally asymmetric multilayers, where the asymmetry is introduced by growing the FM layer in a wedge shape. We show that the design of structural asymmetry by wedging the FM layer is a universal scheme for realizing field-free SOT switching. Moreover, by comparing the FM layer thickness dependence of (Hzeff) in different samples, we show that the efficiency (β =Hzeff/J, J is the current density) is sensitive to the HM/FM interface and the FM layer thickness. The sign of β for thin FM thicknesses is related to the spin Hall angle (θSH) of the HM layer attached to the FM layer. β changes its sign with the thickness of the FM layer increasing, which may be caused by the thickness dependence of the work function of FM. These results show the possibility of engineering the deterministic field-free switching by combining the symmetry breaking and the materials design of the HM/FM interface.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Agronomy, MDPI AG, Vol. 13, No. 4 ( 2023-04-16), p. 1136-
    Abstract: Sugarcane leaf blight (SLB), a major fungal leaf disease of sugarcane (Saccharum spp.), has been attributed to Stagonospora tainanensis. In December 2020 and May 2021, signs of leaf blight were observed on sugarcane in the fields of Chongzuo City, in the Guangxi Province of China. Lesions on the leaves were characterized by yellow or dark red spots in the center. Fungal species were isolated, purified and subjected to pathogenicity evaluation on the sugarcane plants. An isolate that caused symptoms the same as those observed in the field was initially identified as S. tainanensis (Leptosphaeria taiwanensis, perfect state) based on its morphological characteristics both of asexual and sexual stages. Dark brown and nearly spherical pycnidia with conidia of long ellipsoidal, hyaline, one to four cells and 29.27 to 54.39 μm long and 9.03 to 16.12 μm wide were found on corn meal agar medium. Ascomata with asci of cylindrical to clavate, a short stipe and eight spores slightly constricted at the septum, with the size of the spore ranging from 36 to 44 μm long and 8.5 to 12 μm wide, were formed on the sugarcane-leaf-decoction saccharose agar medium. The identity of the species was further confirmed by rDNA ITS and TEF-1α sequencing. The optimal temperature for mycelial growth was 25 °C and the optimal pH was 6.0. The pathogen grew well in a medium with oats as the carbon source and yeast extract as the nitrogen source, but poorly in a medium with urea as the nitrogen source. This study is the first to identify the sugarcane leaf blight pathogen in Guangxi, and the first publication describing the biological characterization of S. tainanensis. The occurrence of sugarcane leaf blight should alert sugarcane breeders and plant pathologists to consider integrating control of this potentially important disease into the agenda of their breeding and disease control programs.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Catalysts, MDPI AG, Vol. 11, No. 9 ( 2021-09-21), p. 1133-
    Abstract: Combination of capture and simultaneous conversion of CO2 into valuable chemicals is a fascinating strategy for reducing CO2 emissions. Therefore, searching for heterogeneous catalysts for efficient catalytic conversion of CO2 is of great importance for carbon capture and utilization. Herein, we report a metalloporphyrin-based covalent organic framework (Co(II)@TA-TF COF) that can capture CO2 and simultaneously convert it into cyclic carbonates under mild conditions. The COF was designed to possess micropores for the adsorption of CO2 and integrated with cobalt(II) porphyrin (Co(II)@TAPP) units as catalytic sites into the vertices of the layered tetragonal networks. The structure of the Co(II)@TA-TF COF is unique where Co(II)@TAPP units are alternately stacked along the z direction with a slipped distance of 1.7 Å, which gives an accessible space to accommodate small molecules, making it possible to expose catalytic sites to substrates within the adjacent stacked layers. As a result, this COF is found to be highly effective for the addition of CO2 and epoxides. Importantly, the Co(II)@TA-TF COF exhibited a dramatic size selectivity for substrates. In conjunction with its reusability, our results highlight the development of a new function of COFs for targeting simultaneous CO2 absorption and utilization upon complementary exploration of the structural features of skeletons and pores. Such promising catalytic performance of the COF makes it possible for its potential practical application.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Energies Vol. 13, No. 3 ( 2020-01-28), p. 589-
    In: Energies, MDPI AG, Vol. 13, No. 3 ( 2020-01-28), p. 589-
    Abstract: In order to investigate the mechanism and the characteristics of the noise induced by unstable flow in a centrifugal pump, the internal flow characteristics in the pump were numerically researched, and the acoustic pressure fluctuations at the pump inlet and outlet were experimentally investigated. Obvious corresponding relationships between the flow instabilities, the cavitation and the noise were established. It was found that the rotating stall, the backflow, the hump, the occurrence of unstable flow and the cavitation in such a centrifugal pump were effectively detected through the noise, which could help to provide fundamental information on flow instabilities and guarantee safe and steady operating conditions for the system. The recirculation and prewhirl regions in the pump upstream pipe, which were caused by the backflow and the rotation of the impeller, presented the circumferential movement with a spiral shape, causing apparent broadband fluctuations at low frequency band of the acoustic pressure. The backflow and rotating stall could also result in broadband fluctuations of the pump outlet noise, which was distributed from 100 Hz to 150 Hz. Meanwhile, the broadband fluctuations of the pump outlet acoustic pressure distributed in the low frequency range, which was produced by the occurrence of cavitation, moved to the lower frequency band as the flow rate increased. The enhanced broadband fluctuations of the pump inlet and outlet noise distributed from 1 kHz to 6 kHz were caused by the coupling between the cavitation-induced noise and the system-produced noise. The broadband fluctuations of the pump inlet noise distributed between 6 kHz and 9 kHz were regarded as the typical frequency band of cavitation in the centrifugal pump.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...