GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Toxins, MDPI AG, Vol. 12, No. 6 ( 2020-06-11), p. 385-
    Abstract: An increasing number of studies have found that modified mycotoxins, such as free mycotoxins, naturally occur in food, and severely impact food safety. The present study investigated concentrations of trichothecenes nivalenol (NIV), deoxynivalenol (DON), and zearalenone (ZEN), together with their modified forms, nivalenol-3-glucoside (NIV-3G), deoxynivalenol-3-glucoside (DON-3G), and zearalenone-14-glucoside (ZEN-14G) and zearalenone-14-sulfate (ZEN-14S), respectively, at successive stages of malt loaf production (flour, dough kneading/fermentation, loaf baking). Toxins in bakery products originate in flour produced from wheat grain that is naturally contaminated with Fusarium culmorum. Mycotoxin concentrations were determined using high-performance liquid chromatography-high resolution mass spectrometry, and did not significantly change during the successive stages of bread production. After the dough kneading/fermentation stage, concentrations of NIV-3G and DON-3G were slightly increased, whereas those of ZEN and ZEN-14S were slightly decreased. The largest average decrease (21%) was found in ZEN-14G. After the baking stage, the average concentrations of NIV-3G, DON-3G, ZEN-14S, and ZEN-14G in the loaf crumb and crust decreased by 23%, 28%, 27%, and 20%, respectively, compared with those in the dough. During this technical process, the concentration of ZEN-14G in loaf crumb significantly decreased by an average of 48%, and those of ZEN, ZEN-14S, and ZEN-14G in loaf crust decreased by an average of 29%, 42%, and 48%, respectively. Considering the possibility of modified mycotoxins degradation to free forms, as well as the ability to synthesize them from free forms during technological processes, it would be prudent to consider them together during analysis.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Toxins, MDPI AG, Vol. 5, No. 5 ( 2013-05-21), p. 1032-1042
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2013
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Toxins, MDPI AG, Vol. 9, No. 6 ( 2017-05-26), p. 176-
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecules, MDPI AG, Vol. 27, No. 23 ( 2022-11-23), p. 8146-
    Abstract: This study evaluated the ability of selected strains of Trichoderma viride, T. viridescens, and T. atroviride to inhibit mycelium growth and the biosynthesis of mycotoxins deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEN), α-(α-ZOL) and β-zearalenol (β-ZOL) by selected strains of Fusarium culmorum and F. cerealis. For this purpose, an in vitro experiment was carried out on solid substrates (PDA and rice). After 5 days of co-culture, it was found that all Trichoderma strains used in the experiment significantly inhibited the growth of Fusarium mycelium. Qualitative assessment of pathogen–antagonist interactions showed that Trichoderma colonized 75% to 100% of the medium surface (depending on the species and strain of the antagonist and the pathogen) and was also able to grow over the mycelium of the pathogen and sporulate. The rate of inhibition of Fusarium mycelium growth by Trichoderma ranged from approximately 24% to 66%. When Fusarium and Trichoderma were co-cultured on rice, Trichoderma strains were found to inhibit DON biosynthesis by about 73% to 98%, NIV by about 87% to 100%, and ZEN by about 12% to 100%, depending on the pathogen and antagonist strain. A glycosylated form of DON was detected in the co-culture of F. culmorum and Trichoderma, whereas it was absent in cultures of the pathogen alone, thus suggesting that Trichoderma is able to glycosylate DON. The results also suggest that a strain of T. viride is able to convert ZEN into its hydroxylated derivative, β-ZOL.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Toxins, MDPI AG, Vol. 13, No. 12 ( 2021-12-04), p. 866-
    Abstract: This study investigated the impact of malting of six wheat cultivars inoculated with Fusarium culmorum on the dynamics of content changes of selected Fusarium toxins. The grains of all the tested cultivars showed a high content of deoxynivalenol (DON), zearalenone (ZEN), and their derivatives, whereas nivalenol (NIV) and its glucoside were found only in the Legenda cultivar. Our experiments confirmed that the malting process of wheat grain enables the secondary growth of Fusarium, and mycotoxin biosynthesis. The levels of toxins in malt were few-fold higher than those in grain; an especially high increase was noted in the case of ZEN and its sulfate as the optimal temperature and pH conditions for the biosynthesis of these toxins by the pathogen are similar to those used in the grain malting process. This is the first paper reporting that during the malting process, biosynthesis of ZEN sulfate occurs, instead of glycosylation, which is a typical modification of mycotoxins by plant detoxication enzymes.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Toxins, MDPI AG, Vol. 11, No. 12 ( 2019-12-09), p. 715-
    Abstract: Eighty-seven samples of malt from several Polish malting plants and 157 beer samples from the beer available on the Polish market (in 2018) were tested for Fusarium mycotoxins (deoxynivalenol (DON), nivalenol (NIV)), and their modified forms ((deoxynivalenol-3-glucoside (DON-3G), nivalenol-3-glucoside (NIV-3G), 3-acetyldeoxynivalenol (3-AcDON)). DON and its metabolite, DON-3G, were found the most, among the samples analyzed; DON and DON-3G were present in 90% and 91% of malt samples, and in 97% and 99% of beer samples, respectively. NIV was found in 24% of malt samples and in 64% of beer samples, and NIV-3G was found in 48% of malt samples and 39% of beer samples. In the malt samples, the mean concentration of DON was 52.9 µg/kg (range: 5.3–347.6 µg/kg) and that of DON-3G was 74.1 µg/kg (range: 4.4–410.3 µg/kg). In the beer samples, the mean concentration of DON was 12.3 µg/L (range: 1.2–156.5 µg/L) and that of DON-3G was 7.1 µg/L (range: 0.6–58.4 µg/L). The concentrations of other tested mycotoxins in the samples of malt and beer were several times lower. The risk of exposure to the tested mycotoxins, following the consumption of beer in Poland, was assessed. The corresponding probable daily intakes (PDIs) remained a small fraction of the tolerable daily intake (TDI). However, in the improbable worst-case scenario, in which every beer bottle consumed would be contaminated with mycotoxins present at the highest level observed among the analyzed beer samples, the PDI would exceed the TDI for DON and its metabolite after the consumption of a single bottle (0.5 L) of beer.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Toxins, MDPI AG, Vol. 15, No. 4 ( 2023-03-28), p. 247-
    Abstract: Small grain cereals are frequently infected with mycotoxigenic Fusarium fungi. Oats have a particularly high risk of contamination with type A trichothecene mycotoxins; their glucoside conjugates have also been reported. Agronomy practices, cereal variety and weather conditions have been suggested to play a role in Fusarium infection in oats. The current study investigates concentrations of free and conjugated Fusarium mycotoxins in organic and conventional oats grown in Scotland. In 2019, 33 milling oat samples (12 organic, 21 conventional) were collected from farmers across Scotland, together with sample questionnaires. Samples were analysed for 12 mycotoxins (type A trichothecenes T-2-toxin, HT-2-toxin, diacetoxyscirpenol; type B trichothecenes deoxynivalenol, nivalenol; zearalenone and their respective glucosides) using LC-MS/MS. The prevalence of type A trichothecenes T-2/HT-2 was very high (100% of conventional oats, 83% of organic oats), whereas type B trichothecenes were less prevalent, and zearalenone was rarely found. T-2-glucoside and deoxynivalenol-glucoside were the most prevalent conjugated mycotoxins (36 and 33%), and co-occurrence between type A and B trichothecenes were frequently observed (66% of samples). Organic oats were contaminated at significantly lower average concentrations than conventional oats, whereas the effect of weather parameters were not statistically significant. Our results clearly indicate that free and conjugated T-2- and HT-2-toxins pose a major risk to Scottish oat production and that organic production and crop rotation offer potential mitigation strategies.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Toxins, MDPI AG, Vol. 12, No. 2 ( 2020-02-15), p. 125-
    Abstract: Citreoviridin (CTV) is a mycotoxin that is produced by Aspergillus terreus, Eupenicillium ochrosalmoneum and Penicillium citreonigrum, and CTV has been detected in a wide range of cereal grains throughout the world. Furthermore, it is especially a serious problem in regions where rice is consumed as a staple food. Moreover, CTV is a well-known yellow rice toxin, and outbreaks of beriberi have occurred due to consumption of rice that is contaminated by CTV even in the recent years. Although CTV biosynthetic genes of A. terreus have been described, those of P. citreonigrum remain unclear, which is concerning since P. citreonigrum is the main cause of CTV contamination in rice. In the present study, we determined the draft genome of the P. citreonigrum strain IMI92228 and revealed the presence of all four genes that form a gene cluster and that are homologous to the CTV biosynthesis genes of A. terreus. The expression of these four homologous genes were highly correlated with CTV production, suggesting that they may play an important role in CTV biosynthesis in P. citreonigrum. We concluded that the gene cluster is a CTV biosynthesis cluster of P. citreonigrum. The findings will contribute to the understanding of the biosynthetic pathway of CTV and will ultimately lead to improvements in the CTV management of agricultural products.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Toxins, MDPI AG, Vol. 12, No. 10 ( 2020-10-13), p. 654-
    Abstract: Mycotoxins are important food contaminants that commonly co-occur with modified mycotoxins such as mycotoxin-glucosides in contaminated cereal grains. These masked mycotoxins are less toxic, but their breakdown and release of unconjugated mycotoxins has been shown by mixed gut microbiota of humans and animals. The role of different bacteria in hydrolysing mycotoxin-glucosides is unknown, and this study therefore investigated fourteen strains of human gut bacteria for their ability to break down masked mycotoxins. Individual bacterial strains were incubated anaerobically with masked mycotoxins (deoxynivalenol-3-β-glucoside, DON-Glc; nivalenol-3-β-glucoside, NIV-Glc; HT-2-β-glucoside, HT-2-Glc; diacetoxyscirpenol-α-glucoside, DAS-Glc), or unconjugated mycotoxins (DON, NIV, HT-2, T-2, and DAS) for up to 48 h. Bacterial growth, hydrolysis of mycotoxin-glucosides and further metabolism of mycotoxins were assessed. We found no impact of any mycotoxin on bacterial growth. We have demonstrated that Butyrivibrio fibrisolvens, Roseburia intestinalis and Eubacterium rectale hydrolyse DON-Glc, HT-2 Glc, and NIV-Glc efficiently and have confirmed this activity in Bifidobacterium adolescentis and Lactiplantibacillus plantarum (DON-Glc only). Prevotella copri and B. fibrisolvens efficiently de-acetylated T-2 and DAS, but none of the bacteria were capable of de-epoxydation or hydrolysis of α-glucosides. In summary we have identified key bacteria involved in hydrolysing mycotoxin-glucosides and de-acetylating type A trichothecenes in the human gut.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Toxins, MDPI AG, Vol. 11, No. 2 ( 2019-02-01), p. 88-
    Abstract: Cross-interaction of antibodies within the immunoaffinity columns used in this study facilitated the simultaneous determination of nivalenol (NIV), deoxynivalenol (DON), their glucoside derivatives (NIV-3G, DON-3G), and 3-acetyl-deoxynivalenol (3-AcDON) in wheat grain harvested in various regions of Poland. In Poland, 2018 was a warm, dry agricultural season, and hence, was relatively less favourable for cereal cultivation than 2017. Data on the natural occurrence of NIV-3G in wheat grain are among the first published in the literature. DON was the most frequently found mycotoxin in the tested samples; the percentage occurrence of DON-positive samples was 92% in 2017 and 61% in 2018. Moreover, DON concentrations were generally higher in 2017 samples (5.2–1670.7 µg/kg) than those in 2018 samples (range 5.0–461.7 µg/kg). A similar pattern was found for DON-3G. However, no statistically significant differences between the samples from the two agricultural seasons were observed for the other three mycotoxins that were analysed, and their concentrations were generally considerably lower. DON was strongly correlated with DON-3G (correlation coefficient r = 0.9558), while NIV was strongly correlated with NIV-3G (r = 0.9442). The percentage occurrence of NIV-3G- and DON-3G-positive samples was 14% in 2017 and 49% in 2018. The NIV-3G/NIV ratio was 5.9–35.7%, while the DON-3G/DON ratio range was 3.2–53.6%. In 2018, wheat samples from Southern Poland exhibited statistically significantly higher levels of DON than those from Northern Poland. The dry and hot summer of 2018 not only reduced wheat yields, but also limited development of Fusarium spp. Therefore, grain harvested that year was generally contaminated with relatively low levels of mycotoxins. Lower levels of DON were also accompanied by lesser amounts of DON-derivatives.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...