GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (25)
  • 1
    In: Marine Drugs, MDPI AG, Vol. 18, No. 6 ( 2020-06-24), p. 328-
    Abstract: Fucoidan has been reported to have a variety of biological activities. However, different algae species, extraction methods, harvesting seasons, and growth regions lead to the structural variation of fucoidan, which would affect the bioactivities of fucoidan. To date, the anti-inflammatory properties and the underlying mechanism of fucoidan from brown alga Saccharina japonica (S. japonica) remain limited. The aims of the present study were to investigate the structure, the anti-inflammatory properties, and the potential molecular mechanisms of fucoidan isolated from S. japonica (SF6) against lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. SF6 was characterized using high performance liquid gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR), and observed to be rich in fucose, galactose, and sulfate. Additionally, results showed that SF6 remarkably inhibited LPS-induced production of various inflammatory mediators and pro-inflammation cytokines, including nitric oxide (NO), NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-β (IL-β), and interleukin-6 (IL-6). A mechanism study showed that SF6 could effectively inhibit inflammatory responses through blocking LPS-induced inflammation pathways, including nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and Janus kinase (JAK)-2 and signal transducer and activator of transcription (STAT)-1/3 pathways. These results suggested that SF6 has the potential to be developed as an anti-inflammatory agent applied in functional food.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nutrients, MDPI AG, Vol. 15, No. 16 ( 2023-08-16), p. 3593-
    Abstract: Low vitamin D (VitD) level is a risk factor for preterm birth (PTB), but the results of previous studies remained inconsistent, which may be influenced by the confounding factors and different types of PTB. We performed Mendelian randomization (MR) to uncover the association of 25-hydroxyvitamin D (25(OH)D) with PTB, premature rupture of membranes (PROM), and preterm premature rupture of membranes (PPROM). This study was conducted in Zhoushan Maternal and Child Health Hospital, Zhejiang, from August 2011 to March 2022. Plasma 25(OH)D levels in three trimesters of pregnancy were measured. We conducted an MR analysis utilizing a genetic risk score (GRS) approach, which was based on VitD-associated single-nucleotide polymorphisms. The prospective cohort study included 3923 pregnant women. The prevalence of PTB, PROM, and PPROM were 6.09%, 13.18%, and 1.33%, respectively. Compared to those without vitamin D deficiency (VDD), only vaginally delivering pregnant women with VDD had a 2.69 (1.08–6.68) times risk of PTB. However, MR analysis did not support the association. One-unit higher GRS was not associated with an increased risk of PTB, regardless of the trimesters (OR [95% CI]: 1.01 [0.93–1.10] , 1.06 [0.96–1.18], and 0.95 [0.82–1.10] , respectively). When further taking PROM and PPROM as the outcomes, the MR analysis also showed no consistent evidence of a causal effect of VitD levels on the risk of them. Our MR analyses did not support a causal effect of 25(OH)D concentrations in the three trimesters on PTB, PROM, and PPROM.
    Type of Medium: Online Resource
    ISSN: 2072-6643
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518386-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nutrients, MDPI AG, Vol. 15, No. 4 ( 2023-02-20), p. 1047-
    Abstract: Calorie restriction (CR) and exercise training (EX) are two critical lifestyle interventions for the prevention and treatment of metabolic diseases, such as obesity and diabetes. Brown adipose tissue (BAT) and skeletal muscle are two important organs for the generation of heat. Here, we undertook detailed transcriptional profiling of these two thermogenic tissues from mice treated subjected to CR and/or EX. We found transcriptional reprogramming of BAT and skeletal muscle as a result of CR but little from EX. Consistent with this, CR induced alterations in the expression of genes encoding adipokines and myokines in BAT and skeletal muscle, respectively. Deconvolution analysis showed differences in the subpopulations of myogenic cells, mesothelial cells and endogenic cells in BAT and in the subpopulations of satellite cells, immune cells and endothelial cells in skeletal muscle as a result of CR or EX. NicheNet analysis, exploring potential inter-organ communication, indicated that BAT and skeletal muscle could mutually regulate their fatty acid metabolism and thermogenesis through ligands and receptors. These data comprise an extensive resource for the study of thermogenic tissue molecular responses to CR and/or EX in a healthy state.
    Type of Medium: Online Resource
    ISSN: 2072-6643
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518386-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Micromachines Vol. 12, No. 12 ( 2021-11-30), p. 1505-
    In: Micromachines, MDPI AG, Vol. 12, No. 12 ( 2021-11-30), p. 1505-
    Abstract: All human activity is associated with the generation of electrical signals. These signals are collectively referred to as electrical physiology (EP) signals (e.g., electrocardiogram, electroencephalogram, electromyography, electrooculography, etc.), which can be recorded by electrodes. EP electrodes are not only widely used in the study of primary diseases and clinical practice, but also have potential applications in wearable electronics, human–computer interface, and intelligent robots. Various technologies are required to achieve such goals. Among these technologies, adhesion and stretchable electrode technology is a key component for rapid development of high-performance sensors. In last decade, remarkable efforts have been made in the development of flexible and high-adhesive EP recording systems and preparation technologies. Regarding these advancements, this review outlines the design strategies and related materials for flexible and adhesive EP electrodes, and briefly summarizes their related manufacturing techniques.
    Type of Medium: Online Resource
    ISSN: 2072-666X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2620864-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Applied Sciences, MDPI AG, Vol. 8, No. 4 ( 2018-04-12), p. 610-
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Materials, MDPI AG, Vol. 14, No. 20 ( 2021-10-11), p. 5961-
    Abstract: For expanding applications of spongy graphene aerogels (GAs) cost-effectively, we report a marriage of the two-step hydrothermal reduction and atmospheric drying method to fabricate a spongy CNC-graphene aerogel (CNG) with oil/water selectivity and tunable mechanical strength by a low-cost and straightforward approach. The reduced graphene oxide (rGO) with CNC by the ice-templated method can give rise to forming the hierarchical structure of hybrid GAs within the PUS network. Meanwhile, the fractured structure of PUS with a pre-compressive step arouses more versatility and durability, involving its selective and high-volume absorbability (up to 143%). The enhanced elastic modulus and more significant swelling effect than pure sponge materials give it a high potential for durable wastewater treatment.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Materials Vol. 15, No. 14 ( 2022-07-11), p. 4820-
    In: Materials, MDPI AG, Vol. 15, No. 14 ( 2022-07-11), p. 4820-
    Abstract: In recent years, optoelectronics and related industries have developed rapidly. As typical optoelectronics devices, photodetectors (PDs) are widely applied in various fields. The functional materials in traditional PDs exhibit high hardness, and the performance of these rigid detectors is thus greatly reduced upon their stretching or bending. Therefore, the development of new flexible PDs with bendable and foldable functions is of great significance and has much interest in wearable, implantable optoelectronic devices. Graphene with excellent electrical and optical performance constructed on various flexible and rigid substrates has great potential in PDs. In this review, recent research progress on graphene-based flexible PDs is outlined. The research states of graphene conductive films are summarized, focusing on PDs based on single-component graphene and mixed-structure graphene, with a systematic analysis of their optical and mechanical performance, and the techniques for optimizing the PDs are also discussed. Finally, a summary of the current applications of graphene flexible PDs and perspectives is provided, and the remaining challenges are discussed.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Materials, MDPI AG, Vol. 14, No. 1 ( 2021-01-04), p. 207-
    Abstract: Monolayer nanosheets have gained significant attention as functional materials and also in photo/electrocatalysis due to their unique physical/chemical properties, abundance of highly exposed coordination sites, edges, and corner sites, motivating the pursuit of highly active monolayer nanosheets. NiFe-based layered double hydroxide (NiFe-LDH) nanosheets have been regarded as the most efficient electrocatalysis for oxygen evolution. However, the limited catalytic active site and the stacking layer limited the performance. Therefore, by introducing highly electroactive Co ions into monolayer NiFe-LDH, the obtained ternary NiFeCo-LDH monolayer structure possessed an increased concentration of defect (oxygen and metal vacancies), providing enough unsaturated coordination sites, benefitting the electrocatalytic water oxidation, as also explained by the density functional theory (DFT). This work reported an efficient strategy for the synthesis of ternary monolayer LDH in the application of energy conversion and storage.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Marine Drugs, MDPI AG, Vol. 20, No. 1 ( 2021-12-23), p. 16-
    Abstract: Actinomycins as clinical medicine have been extensively studied, while few investigations were conducted to discover the feasibility of actinomycins as antimicrobial natural dye contributing to the medical value of the functional fabrics. This study was focused on the application of actinomycin X2 (Ac.X2), a peptide pigment cultured from marine-derived Streptomyces cyaneofuscatus, in the dyeing and finishing of silk fabric. The dyeing potential of Ac.X2 with silk vs. cotton fabrics was assessed. As a result, the silk fabric exhibited greater uptake and color fastness with Ac.X2. Through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses, some changes of chemical property for the dyed fabric and Ac.X2 were studied. The silk fabric dyed with Ac.X2 exhibited good UV protection ability. The antibacterial properties of dyed and finished silk were also evaluated, which exhibited over 90% antibacterial activity even after 20 washing cycles. In addition, the brine shrimp assay was conducted to evaluate the general toxicity of the tested fabric, and the results indicated that the dyed silk fabrics had a good biological safety property.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Nanomaterials, MDPI AG, Vol. 12, No. 16 ( 2022-08-15), p. 2792-
    Abstract: Developing clean and renewable ocean wave energy is a top priority and an effective way to achieve carbon neutrality. Triboelectric nanogenerators (TENGs) have emerged as promising green and clean energy-harvesting devices. To harvest low-frequency wave energy efficiently, much effort has been made on the modification of the contact surface, which leads to a higher fabrication cost. In this work, we designed a novel “Lucky-Bag” core (LBC) for spherical TENGs with a low-cost and easy fabricating process. The nanofiber/silicone hybrid porous outer layer of the LBC can switch freely from plane to surface and improve the output performance of both the plane and spherical TENGs. Several factors, such as the input frequency, direction, and resistive load, together with the thickness were systematically investigated; the unique porous soft-contact structure increased the triboelectric contact area, and the working mechanism was studied by using the COMSOL software. The experimental results showed that the peak-to-peak open-circuit voltage (Voc) and short-circuit current (Isc) could reach 580 V and 23.5 μA at 1.5 Hz, even under 2D linear motion. Besides, the maximum output power of the spherical TENGs reached 9.10 mW, which can fully power electronic devices such as capacitors and LEDs under water wave triggering. These findings provide useful guidance for optimizing the performance of spherical TENGs for practical applications in harvesting water wave energy.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...