GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (10)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Water Vol. 14, No. 7 ( 2022-03-30), p. 1109-
    In: Water, MDPI AG, Vol. 14, No. 7 ( 2022-03-30), p. 1109-
    Abstract: Large marginal sandbanks in tidal rivers experience periodic splitting processes. In this paper, the morphodynamic evolution of Jingjiang Beach, a sandbank on the Yangtze tidal river, has been investigated based on measured data. The results show that the duration of the splitting process in the middle and lower sections of Jingjiang Beach is 4–6 years. The periodical evolution occurred both in flood season and dry season, with a slight difference in the initial stage of splitting. This paper focuses on the evolution characteristics related to strong human activities since 2003. Ever since the second stage of the 12.5 m Deepwater Channel Project (DCP), the volumes above the 10 m and 12.5 m isobaths of Jingjiang Beach have been generally decreasing. The elevation data in recent years have demonstrated that the upper section, and nearshore side of the middle section, of Jingjiang Beach have tended to be stable. Moreover, the migration distance for a splitting sand body at the tail of Jingjiang Beach appears to have shortened. With the operation of the Three Gorges Reservoir, the number of days with discharge less than 15,000 m3/s has shown a decreasing trend; thus, the development scale of Jingjiang Beach could decline in the future.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nanomaterials, MDPI AG, Vol. 9, No. 7 ( 2019-07-01), p. 965-
    Abstract: Terahertz (THz) radiation has received much attention during the past few decades for its potential applications in various fields, such as spectroscopy, imaging, and wireless communications. To use terahertz waves for data transmission in different application systems, the efficient and rapid modulation of terahertz waves is required and has become an in-depth research topic. Since the turn of the century, research on metasurfaces has rapidly developed, and the scope of novel functions and operating frequency ranges has been substantially expanded, especially in the terahertz range. The combination of metasurfaces and semiconductors has facilitated both new opportunities for the development of dynamic THz functional devices and significant achievements in THz modulators. This paper provides an overview of THz modulators based on different kinds of dynamic tunable metasurfaces combined with semiconductors, two-dimensional electron gas heterostructures, superconductors, phase-transition materials, graphene, and other 2D material. Based on the overview, a brief discussion with perspectives will be presented. We hope that this review will help more researchers learn about the recent developments and challenges of THz modulators and contribute to this field.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Energies, MDPI AG, Vol. 10, No. 7 ( 2017-07-03), p. 911-
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Water, MDPI AG, Vol. 9, No. 2 ( 2017-02-10), p. 110-
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Water, MDPI AG, Vol. 14, No. 20 ( 2022-10-15), p. 3260-
    Abstract: The spraying width and uniformity coefficient are important for the design of a micro-sprinkling hose. In this study, experiments were conducted on the water application intensity distribution for an individual orifice and multiple groups of orifices under three different working pressures (41, 69 and 103 kPa). In the test of an individual orifice, the spraying angles varied from 40° to 90°. The results showed that the water application intensity distributions of an individual orifice were well fitted by a two-dimensional Gaussian distribution. Further study indicated that the bimodal Gaussian distribution model performed well on tracking the two-dimensional features of the water application intensity distribution, with the determination coefficient R2 〉 0.90 and the standard root mean square error NRMSE 〈 30%. It was revealed that the fitting parameters of the two-dimensional Gaussian distribution model had physical meaning and were directly related to the strength and location of the water application intensity distributions. Based on the analysis of these fitting parameters, it was found that the water application intensity distribution of an individual orifice was affected by the pressure, spraying angle and orifice area, among which the spraying angle was the most sensitive factor. By establishing a linear relationship between the fitting parameters and the spraying angles, the water application intensity distribution of an individual orifice for any spraying angle could be predicted by the Gaussian model. Therefore, the water application intensity distribution of multiple groups of orifices could be calculated by overlapping the water application intensity distributions of the individual orifices. The Monte Carlo method was used in this study to determine the maximum spraying width and uniformity coefficient by generating different groups of orifice arrangement for micro-sprinkling hoses. Eventually, the optimized orifice arrangement was recommended for the better design of micro-sprinkling hoses.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Agronomy Vol. 12, No. 12 ( 2022-12-16), p. 3192-
    In: Agronomy, MDPI AG, Vol. 12, No. 12 ( 2022-12-16), p. 3192-
    Abstract: Tea (Camellia sinensis L.), as one of the most important cash crops in China, plays an important role in increasing farmers’ incomes and guaranteeing a high quality of life. Tea production has been greatly influenced by both climate change and economic development in China. However, without a scientific understanding of the interaction mechanism of climate change and the impetus from rapid economic development on tea production practices in China, it is difficult to take adaptive actions to meet the climate change challenges for the tea industry. In this paper, we firstly assessed the potential impacts of climate change on tea climate suitability by empirical formula calculation using meteorological data; then, the effects from the additional climatic stress due to warming on tea production were detected with the annual statistical tea yield record on a municipal level. The contribution of socioeconomic development to the tea industry was evaluated with the comparison of the movement of China’s national economy’s and tea industry’s gravity center during the period of 1987–2017. Finally, a conceptual adaptation framework was built to demonstrate the interaction mechanisms between climate change, tea production, and the economic development. The results showed that there was a negative impact of climate change on tea production in mainland China, with the percentage of high tea climate suitability ( 〉 0.9) areas dropping by 45% to 32%, while opportunities of enlarging the tea cultivating area emerged in the north tea production region where the tea climate suitability increased. We found that the tea planting area expanded northwards from 33° N in 1987 to 35° N in 2017 to take advantage of the favorable climatic resources due to warming, and tea planting decreased at an altitude of 100–400 m while increasing to higher altitude of 400–2000 m to avoid hot temperature damage and seek the optimum environment in high mountainous areas for tea production. In addition, the tea production moved westward along the longitude, decreasing obviously at 117–121° E while increasing significantly at 98–104° E and 107–110° E. Meanwhile, the tea production gravity center showed a westward movement consistent with the national economic gravity center moving trend, which means that tea industry development was driven by multiple socioeconomic factors and climatic forcings. A conceptual framework was built in this paper, aiming to show a robust adaptation mechanism for the tea system to maximize the benefits and minimize the damages from the altered climatic resources under rapid economic development in mainland China. The results in this study would help deepen the understanding of the adaptation process and practices for tea production in mainland China.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Agriculture, MDPI AG, Vol. 11, No. 11 ( 2021-11-10), p. 1122-
    Abstract: Climate change has dramatic impacts on the growth and the geographical distribution of tea (Camellia sinensis L.). Assessing the potential distribution of tea will help decision makers to formulate appropriate adaptation measures to use the altered climatic resources and avoid the damage from climate hazards. The objective in this study is to model the current and future distribution of tea species based on the four SSPs scenarios using the MaxEnt model in China. For the modeling procedure, tea growth records in 410 sites and 9 climate variables were used in this paper. The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the performance of the model. The AUC value was over 0.9 in this study, showing the excellent simulation result of the model. In relation to the current distribution, areas of 82.01 × 104 km2 (8.51% of total land area in China), 115.97 × 104 km2 (12.03% of total land area in China), and 67.14 × 104 km2 (6.97% of total land area in China) were recognized as Marginal, Medium, and Optimal climate suitable habitats for tea over China. Compared to the current distribution, most of the Optimal suitability areas in southeast China would be lost in four scenarios. The area of Marginal and Medium suitable habitats would expand in SSP370 and SSP585, especially in 2041–2061 and 2081–2100. The suitable area of tea would expand northwards and westwards, suggesting that additional new suitable habitats could be created for tea production with the future climate change, especially in Shandong, Henan, Guizhou, and Yunnan Provinces. This research would provide vital scientific understanding for policy making on tea production, tea garden site chosen and adopyion of adaptation methods in the future.
    Type of Medium: Online Resource
    ISSN: 2077-0472
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2651678-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Sensors Vol. 20, No. 3 ( 2020-02-03), p. 812-
    In: Sensors, MDPI AG, Vol. 20, No. 3 ( 2020-02-03), p. 812-
    Abstract: Image segmentation is one of the most important methods for animal phenome research. Since the advent of deep learning, many researchers have looked at multilayer convolutional neural networks to solve the problems of image segmentation. A network simplifies the task of image segmentation with automatic feature extraction. Many networks struggle to output accurate details when dealing with pixel-level segmentation. In this paper, we propose a new concept: Depth density. Based on a depth image, produced by a Kinect system, we design a new function to calculate the depth density value of each pixel and bring this value back to the result of semantic segmentation for improving the accuracy. In the experiment, we choose Simmental cattle as the target of image segmentation and fully convolutional networks (FCN) as the verification networks. We proved that depth density can improve four metrics of semantic segmentation (pixel accuracy, mean accuracy, mean intersection over union, and frequency weight intersection over union) by 2.9%, 0.3%, 11.4%, and 5.02%, respectively. The result shows that depth information produced by Kinect can improve the accuracy of the semantic segmentation of FCN. This provides a new way of analyzing the phenotype information of animals.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Remote Sensing Vol. 15, No. 2 ( 2023-01-16), p. 540-
    In: Remote Sensing, MDPI AG, Vol. 15, No. 2 ( 2023-01-16), p. 540-
    Abstract: Exploring the trade-off/synergy among ecosystem services (ESs) of agroecosystems could provide effective support for improving agricultural resilience for sustainable development. The construction of ecological tea gardens is emerging, aims to achieve a win-win situation for the tea industry and ecological environment protection. However, the effect of ES trade-offs/synergies on tea production is still not clear. In this study, we selected Fuzhou city, China, as a case study and explored the relationship among tea production and ESs in 2010 and 2020. Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) and Intelligent Urban Ecosystem Management System (IUEMS) models were used to assess the ecosystem (dis)services, which were tea production, water yield, soil retention, net primary productivity (NPP), climate regulation, soil erosion and carbon emissions. Then, the sum of trade-off/synergy coefficients of ESs (Cts) were defined to reveal the trade-off/synergy in tea gardens and areas except tea gardens (ETG areas). K-means clustering was used to assess the spatiotemporal change of traditional tea garden and ecological tea garden, reflecting the effect of ecological tea garden construction. The results showed that: (1) the high-value areas of tea production were mainly distributed in Lianjiang County, with yields up to 3.6 t/ha, and the low-value areas in Yongtai County, with yields from 0.1–1.0 t/ha. Other ESs showed spatial heterogeneity. (2) The trade-offs in ETG areas intensified from 2010 to 2020, with Cts decreasing from −0.28 to −0.73, and the synergy in tea garden was at risk of decline, with Cts decreasing from 4.46 to 1.02. (3) From 2010 to 2020, 96.72% of traditional tea gardens (Area I) were transformed into ecological tea gardens (Areas IV and V). (4) Further, we classified the tea garden into five zones based on tea yield, with Zone I as the low tea yield areas and Zone V as the highest. From Zone I to Zone V, the Cts increased from 2.6 to 7.5 in 2010, and from 1.9 to 6.5 in 2020, respectively. These results demonstrate the effectiveness of the construction of ecological tea gardens in Fuzhou and provide a reference for subsequent studies on the ESs of tea gardens and governance of ecological tea gardens.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Nanomaterials Vol. 11, No. 5 ( 2021-05-13), p. 1281-
    In: Nanomaterials, MDPI AG, Vol. 11, No. 5 ( 2021-05-13), p. 1281-
    Abstract: A symmetric graphene plasmon waveguide (SGPWG) is proposed here to achieve excellent subwavelength waveguiding performance of mid-infrared waves. The modal properties of the fundamental graphene plasmon mode are investigated by use of the finite element method. Due to the naturally rounded tips, the plasmon mode in SGPWG could achieve a normalized mode field area of ~10−5 (or less) and a figure of merit over 400 by tuning the key geometric structure parameters and the chemical potential of graphene. In addition, results show that the modal performance of SGPWG seems to improve over its circular counterparts. Besides the modal properties, crosstalk analysis indicates that the proposed waveguide exhibits extremely low crosstalk, even at a separation distance of 64 nm. Due to these excellent characteristics, the proposed waveguide has promising applications in ultra-compact integrated photonic components and other intriguing nanoscale devices.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...