GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
  • 1
    In: Sustainability, MDPI AG, Vol. 13, No. 9 ( 2021-05-08), p. 5273-
    Abstract: Graphene quantum dots (GQDs) have been successfully used as a highly sensitive probe for the sensing of formaldehyde (HCHO) in an aqueous solution. Through static quenching, the probe utilizes the interaction between HCHO and GQDs to trigger the “turn off” fluorescence response, and has good selectivity. The probe can detect HCHO in a pure aqueous solution, and it also can still detect HCHO in a complex environment with a pH range from 4 to 10. The concentration of HCHO and the fluorescence intensity of GQDs show a good linear relationship within the range of HCHO of 0–1 μg/mL, which was much more sensitive than previous reports. The limit of HCHO detection by GQDs is about 0.0515 μg/mL. In addition, we successfully applied it to the actual food inspection. It is proved to be a selective, sensitive and visualized method to check whether the concentration of HCHO in the foods exceeds the regulatory limit, which presents a potential application in food safety testing.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Polymers, MDPI AG, Vol. 12, No. 5 ( 2020-05-13), p. 1116-
    Abstract: The multifunctional photothermal therapy (PTT) platform with the ability to selectively kill bacteria over mammalian cells has received widespread attention recently. Herein, we prepared graphene oxide-amino(polyethyleneglycol) (GO-PEG-NH2) while using the hydrophobic interaction between heptadecyl end groups of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol)] (DSPE-PEG-NH2) and graphene oxide (GO). Based on GO-PEG-NH2, the versatile PTT system was constructed with simultaneous selective recognition, capturing, and photothermal killing of bacteria. When the cells undergo bacterial infection, owing to the poly(ethylene glycol) (PEG) chains and positively charged amino groups, GO-PEG-NH2 can specifically recognize and capture bacteria in the presence of cells. Meanwhile, the stable photothermal performance of GO-PEG-NH2 enables the captured bacteria to be efficiently photothermally ablated upon the irradiation of 808 nm laser. Besides, the GO-PEG-NH2 is highly stable in various biological media and it exhibits low cytotoxicity, suggesting that it holds great promise for biological applications. This work provides new insight into graphene-based materials as a PTT agent for the development of new therapeutic platforms.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Crystals, MDPI AG, Vol. 8, No. 8 ( 2018-08-18), p. 329-
    Abstract: The effect of different atomic substitutions at Mn sites on the magnetic and magnetocaloric properties in Ni50Mn35Co2Sn13 alloy has been studied in detail. The substitution of Ni or Co for Mn atoms might lower the Mn content at Sn sites, which would reduce the d-d hybridization between Ni 3d eg states and the 3d states of excess Mn atoms at Sn sites, thus leading to the decrease of martensitic transformation temperature TM in Ni51Mn34Co2Sn13 and Ni50Mn34Co3Sn13 alloys. On the other hand, the substitution of Sn for Mn atoms in Ni50Mn34Co2Sn14 would enhance the p-d covalent hybridization between the main group element (Sn) and the transition metal element (Mn or Ni) due to the increase of Sn content, thus also reducing the TM by stabilizing the parent phase. Due to the reduction of TM, a magnetostructural martensitic transition from FM austenite to weak-magnetic martensite is realized in Ni51Mn34Co2Sn13 and Ni50Mn34Co2Sn14, resulting in a large magnetocaloric effect around room temperature. For a low field change of 3 T, the maximum ∆SM reaches as high as 30.9 J/kg K for Ni50Mn34Co2Sn14. A linear dependence of ΔSM upon μ0H has been found in Ni50Mn34Co2Sn14, and the origin of this linear relationship has been discussed by numerical analysis of Maxwell’s relation.
    Type of Medium: Online Resource
    ISSN: 2073-4352
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2661516-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...