GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (40)
  • 1
    In: Cancers, MDPI AG, Vol. 13, No. 22 ( 2021-11-18), p. 5793-
    Abstract: This study aimed to evaluate the diagnostic potential of a novel RFO model in differentiating GBM and SBM with multiparametric MR sequences collected from 244 (131 GBM and 113 SBM) patients. Three basic volume of interests (VOIs) were delineated on the conventional axial MR images (T1WI, T2WI, T2_FLAIR, and CE_T1WI), including volumetric non-enhanced tumor (nET), enhanced tumor (ET), and peritumoral edema (pTE). Using the RFO model, radiomics features extracted from different multiparametric MRI sequence(s) and VOI(s) were fused and the best sequence and VOI, or possible combinations, were determined. A multi-disciplinary team (MDT)-like fusion was performed to integrate predictions from the high-performing models for the final discrimination of GBM vs. SBM. Image features extracted from the volumetric ET (VOIET) had dominant predictive performances over features from other VOI combinations. Fusion of VOIET features from the T1WI and T2_FLAIR sequences via the RFO model achieved a discrimination accuracy of AUC = 0.925, accuracy = 0.855, sensitivity = 0.856, and specificity = 0.853, on the independent testing cohort 1, and AUC = 0.859, accuracy = 0.836, sensitivity = 0.708, and specificity = 0.919 on the independent testing cohort 2, which significantly outperformed three experienced radiologists (p = 0.03, 0.01, 0.02, and 0.01, and p = 0.02, 0.01, 0.45, and 0.02, respectively) and the MDT-decision result of three experienced experts (p = 0.03, 0.02, 0.03, and 0.02, and p = 0.03, 0.02, 0.44, and 0.03, respectively).
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Sciences, MDPI AG, Vol. 12, No. 9 ( 2022-05-03), p. 4608-
    Abstract: With the gradual deepening of mine excavation depth, the strong disturbance of deep strata becomes more and more obvious. Rock’s failure under blasting mainly depends on its dynamic tensile strength. The changes in rock’s dynamic properties are obviously affected by temperature and water. In order to study the dynamic tensile properties of annular sandstone specimens under the influence of temperature and water, deep sandstone was drilled, followed by water bath tests at eight temperatures (25~95 °C). It can be seen from the analysis of test results that the mass and volume growth rates of the annular and the intact sandstone specimens first increased and then decreased, while the density growth rate first decreased and then increased. The mass and volume growth rates of the annular sandstone specimens were smaller, but the density growth rate was larger. Because of the increase in water temperature, the dynamic compressive strength first increased and then decreased. The dynamic tensile strength of the annular sandstone specimen was lower. The average strain rate and peak strain also showed a quadratic function relationship of first decreasing and then increasing with the increase in water temperature. The average strain rate of the annular sandstone specimen was smaller, but the peak value changed greatly. The Brazilian disc validity condition is applicable to two failure conditions of sandstone specimens. Through XRD and SEM analysis, we found that the changes in the dynamic properties of sandstone specimens were not due to their own material composition, but to the damage to their structure caused by the temperature–water coupling effect.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2018
    In:  Applied Sciences Vol. 8, No. 8 ( 2018-08-07), p. 1315-
    In: Applied Sciences, MDPI AG, Vol. 8, No. 8 ( 2018-08-07), p. 1315-
    Abstract: Tanks are essential facilities for oil and chemical storage and transportation. As indispensable parts, the tank floors have stringent nondestructive testing requirements owing to their severe operating conditions. In this article, a synthetic aperture focusing technology method is proposed for the circumferential scanning of the tank floor from the edge outside the tank using ultrasonic guided waves. The zeroth shear horizontal (SH0) mode is selected as an ideal candidate for plate inspection, and the magnetostrictive sandwich transducer (MST) is designed and manufactured for the generation and receiving of the SH0 mode. Based on the exploding reflector model (ERM), the relationships between guided wave fields at different radii of polar coordinates are derived in the frequency domain. The defect spot is focused when the sound field is calculated at the radius of the defect. Numerical and experimental validations are performed for the defect inspection in an iron plate. The angular bandwidth of the defect spot is used as an index for the angular resolution. The results of the proposed method show significant improvement compared to those obtained by the B-scan method, and it is found to be superior to the conventional method—named delay and sum (DAS)—in both angular resolution and calculation efficiency.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied Sciences, MDPI AG, Vol. 14, No. 6 ( 2024-03-11), p. 2359-
    Abstract: Under dynamic loads, such as blasting, excavation, or quarrying, rocks with fissures are the first to sustain damage, leading to instability in the engineering rock mass. To investigate the kinetic properties of fractured rocks, fractured coal mine sandstone specimens underwent impact compression tests using a dynamic–static combination SHPB (split Hopkinson pressure bar) test device at different loading rates under combined dynamic and static conditions. The damage characteristics of the specimens were analyzed from an energy point of view. The results show that under the dynamic and static combined condition, when five impact loading air pressures are used for loading at different impact rates, the trends of the dynamic stress–strain curves of prefabricated fissured rock samples under various impact pressures were discovered to be similar and were mainly categorized into three main stages of elasticity, yield, and destruction; the specimen’s dynamic compressive strength increases according to a power function relationship; as the average strain rate increases, the dynamic strain increases linearly and the dynamic modulus of elasticity increases in a quadratic relationship, all of which show a significant strain rate effect. The incident energy is a power function of the loading rate. The reflected, transmitted, and absorbed energies by the sample increase with the incident energy. The degree of the sandstone specimen fragmentation gradually grows with increasing impact loading rate and incident energy, as evidenced by a decrease in the scale of the fragments. The absorbed energy in the sample is mainly used for the deformation damage of the rock, and the more intense the fragmentation of the specimen, the more absorbed energy is required.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Biosensors, MDPI AG, Vol. 12, No. 9 ( 2022-09-02), p. 714-
    Abstract: This paper presents the development of a compact, three-electrode electrochemical device functionalized by a biocompatible layer of hyaluronic acid methacrylate (HAMA) hydrogel for the adsorptive removal of detrimental lead (Pb(II)) ions in aqueous solutions. An adsorption mechanism pertaining to the observed analytical performance of the device is proposed and further experimentally corroborated. It is demonstrated that both the molecular interactions originating from the HAMA hydrogel and electrochemical accumulation originating from the electrode beneath contribute to the adsorption capability of the device. Infrared spectral analysis reveals that the molecular interaction is mainly induced by the amide functional group of the HAMA hydrogel, which is capable of forming the Pb(II)–amide complex. In addition, inductively coupled plasma mass spectrometric (ICP-MS) analysis indicates that the electrochemical accumulation is particularly valuable in facilitating the adsorption rate of the device by maintaining a high ion-concentration gradient between the solution and the hydrogel layer. ICP-MS measurements show that 94.08% of Pb(II) ions present in the test solution can be adsorbed by the device within 30 min. The HAMA hydrogel-modified electrochemical devices exhibit reproducible performance in the aspect of Pb(II) removal from tap water, with a relative standard deviation (RSD) of 1.28% (for n = 8). The experimental results suggest that the HAMA hydrogel-modified electrochemical device can potentially be used for the rapid, on-field remediation of Pb(II) contamination.
    Type of Medium: Online Resource
    ISSN: 2079-6374
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662125-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Metabolites, MDPI AG, Vol. 9, No. 9 ( 2019-09-04), p. 174-
    Abstract: Infectious spleen and kidney necrosis virus (ISKNV) has caused serious economic losses in the cultured mandarin fish (Siniperca chuatsi) industry in China. Host metabolism alteration induced by disease infection may be the core problem of pathogenesis. However, to date, little is known about the disease-induced fish metabolism changes. In this study, we first reported ISKNV, the fish virus, induced metabolism alteration. The metabolomics profiles of Chinese perch brain cells (CPB) post-ISKNV infection at progressive time points were analyzed using the UHPLC-Q-TOF/MS technique. A total of 98 differential metabolites were identified. In the samples harvested at 24 hours post-infection (hpi; the early stage of ISKNV infection), 49 differential metabolites were identified comparing with control cells, including 31 up-regulated and 18 down-regulated metabolites. And in the samples harvested at 72 hpi (the late stage of ISKNV infection), 49 differential metabolites were identified comparing with control cells, including 27 up-regulated and 22 down-regulated metabolites. These differential metabolites were involved in many pathways related with viral pathogenesis. Further analysis on the major differential metabolites related to glucose metabolism and amino acid metabolism revealed that both glucose metabolism and glutamine metabolism were altered and a metabolic shift was determined from glucose to glutamine during ISKNV infection cycle. In ISKNV-infected cells, CPB cells prefer to utilize glucose for ISKNV replication at the early stage of infection, while they prefer to utilize glutamine to synthetize lipid for ISKNV maturation at the late stage of infection. These findings may improve the understanding of the interaction between ISKNV and host, as well as provide a new insight for elucidating the ISKNV pathogenic mechanism.
    Type of Medium: Online Resource
    ISSN: 2218-1989
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662251-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Sustainability Vol. 13, No. 22 ( 2021-11-11), p. 12464-
    In: Sustainability, MDPI AG, Vol. 13, No. 22 ( 2021-11-11), p. 12464-
    Abstract: Analysis of the geological conditions of high-altitude and low-temperature stope slopes and the study of grade division are the basis for the evaluation of slope stability. Based on the engineering background of the eastern slope of the Preparatory iron mine in Hejing County, Xinjiang, we comprehensively analyse and summarize the factors that affect the geological conditions of high-altitude and cold slopes and finally determine nine geological conditions that affect the index parameters. Based on a back-propagation (BP) neural network algorithm, we establish an applicable network model to analyse the geological conditions of slopes in cold areas. The model is applied to the eastern slope to analyse and classify the geological conditions of the high-altitude and low-temperature slopes. The research results show that the skarn rock layer in the eastern slope is in a stable state and not prone to landslides, and its corresponding geological condition is Grade I; meanwhile, the monzonite porphyry rock layer is in a relatively stable state, with a potential for landslides and a corresponding geological condition Grade II. The marble rock layer is in a generally stable state, there is the possibility of landslide accidents, and the corresponding geological condition level is Grade III. The limestone rock layer is in an unstable state and prone to landslide accidents, it has a corresponding geology condition Grade IV. Therefore, the eastern slope can be divided into different geological condition regions: Zone I, Zone II, Zone III, and Zone IV, and the corresponding geological condition levels for these are Grade I, Grade II, Grade III, and Grade IV. These results may provide a basis for the stability evaluation of high altitudes and cold slopes.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Electronics Vol. 11, No. 21 ( 2022-11-07), p. 3638-
    In: Electronics, MDPI AG, Vol. 11, No. 21 ( 2022-11-07), p. 3638-
    Abstract: Entity linking is a process of linking mentions in a document with entities in a knowledge base. Collective entity disambiguation refers to mapping of multiple mentions in a document with their corresponding entities in a knowledge base. Most previous research has been based on the assumption that all mentions in the same document represent the same topic. However, mentions usually correspond to different topics. In this article, we proposes a new global model to explore the extraction of multitopic coherence in the same document. Herein, we present mention association graphs and candidate entity association graphs to obtain multitopic coherence features of the same document using graph neural networks (GNNs). In particular, we propose a variant GNN for our model and a particular graph readout function. We conducted extensive experiments on several datasets to demonstrate the effectiveness to the proposed model.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662127-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Toxics, MDPI AG, Vol. 10, No. 11 ( 2022-10-23), p. 636-
    Abstract: Urinary benzene metabolites trans, trans-muconic acid (t, t-MA), and S-phenyl mercapturic acid (S-PMA) are often used as biomarkers of internal exposure to benzene. However, there are few reports on using urinary benzene metabolites to estimate airborne benzene concentrations in individuals exposed to benzene. In this study, t, t-MA, and S-PMA were analyzed by UPLC-MS/MS, and a simple pharmacokinetic model was used to calculate the daily intake (DI) of benzene based on the levels of urinary t, t-MA, and S-PMA in occupational individuals. The back-calculated airborne benzene levels (BCABL) were obtained from the DI of benzene. Among the exposed subjects (n = 84), the median BCABL (3.67 mg/m3) based on t, t-MA was very close to the median level of measured airborne benzene (3.27 mg/m3, p = 0.171), and there was no effect of smoking or dietary habits on t, t-MA-based BCABL. In the control subjects (n = 49), the levels of measured airborne benzene were all below the quantitation limit (0.024 mg/m3), and the BCABL (0.002–0.25 mg/m3) calculated by S-PMA was close to this background level. Our study suggests that the t, t-MA-based BCABL can reflect the actual airborne benzene level in a range of 1.10–86.91 mg/m3 and that the S-PMA-based BCABL is more reliable for non-professional benzene exposure.
    Type of Medium: Online Resource
    ISSN: 2305-6304
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2733883-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Biomimetics, MDPI AG, Vol. 7, No. 4 ( 2022-12-16), p. 245-
    Abstract: As one of the new intelligent materials, controllable bionic adhesive materials have great application prospects in many fields, such as wearable electronic devices, wall climbing robot systems, and biomedical engineering. Inspired by the microstructure of the newt pad’s surface, this paper reports a bionic adhesive surface material with controllable adhesion on dry, wet acrylic, and iron sheet surfaces. The material is prepared by mixing the PDMS matrix with micron carbonyl iron powders (CIPs) and then pouring the mixture into a female mold prepared by Photo-curing 3D Printing for curing. As the mold interior is designed with a two-level microstructure array, the material’s surface not only coated a regular hexagonal column array with a side length of 250 μm and a height of 100 μm but also covered seven dome structures with a diameter of 70 μm on each column. In what follows, the adhesion force of the proposed materials contacted three different surfaces are tested with/without magnetic fields. The experimental results show that the MAEs covered with two-level bionic structures(2L-MAE) reported in this paper exhibit a stronger initial adhesion in the three types of surfaces compared to the normal one. Besides, we also found that the magnetic field will noticeably affect their adhesion performance. Generally, the 2L-MAE’s adhesion will increase with the external magnetic field. When the contact surface is an iron sheet, the material adhesion will be reduced by the magnetic field.
    Type of Medium: Online Resource
    ISSN: 2313-7673
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2856245-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...