GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Remote Sensing, MDPI AG, Vol. 12, No. 7 ( 2020-04-10), p. 1214-
    Abstract: The detection, monitoring, and forecasting of sea-ice conditions, including their extremes, is very important for ship navigation and offshore activities, and for monitoring of sea-ice processes and trends. We summarize here recent advances in the monitoring of sea-ice conditions and their extremes from satellite data as well as the development of sea-ice seasonal forecasting capabilities. Our results are the outcome of the three-year (2015–2018) SPICES (Space-borne Observations for Detecting and Forecasting Sea-Ice Cover Extremes) project funded by the EU’s Horizon 2020 programme. New SPICES sea-ice products include pancake ice thickness and degree of ice ridging based on synthetic aperture radar imagery, Arctic sea-ice volume and export derived from multisensor satellite data, and melt pond fraction and sea-ice concentration using Soil Moisture and Ocean Salinity (SMOS) radiometer data. Forecasts of July sea-ice conditions from initial conditions in May showed substantial improvement in some Arctic regions after adding sea-ice thickness (SIT) data to the model initialization. The SIT initialization also improved seasonal forecasts for years with extremely low summer sea-ice extent. New SPICES sea-ice products have a demonstrable level of maturity, and with a reasonable amount of further work they can be integrated into various operational sea-ice services.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 13, No. 11 ( 2021-06-05), p. 2213-
    Abstract: The Arctic responds rapidly to climate change, and the melting of land ice is a major contributor to the observed present-day sea-level rise. The coastal regions of these ice-covered areas are showing the most dramatic changes in the form of widespread thinning. Therefore, it is vital to improve the monitoring of these areas to help us better understand their contribution to present-day sea levels. In this study, we derive ice-surface elevations from the swath processing of CryoSat-2 SARIn data, and evaluate the results in several Arctic regions. In contrast to the conventional retracking of radar data, swath processing greatly enhances spatial coverage as it uses the majority of information in the radar waveform to create a swath of elevation measurements. However, detailed validation procedures for swath-processed data are important to assess the performance of the method. Therefore, a range of validation activities were carried out to evaluate the performance of the swath processor in four different regions in the Arctic. We assessed accuracy by investigating both intramission crossover elevation differences, and comparisons to independent elevation data. The validation data consisted of both air- and spaceborne laser altimetry, and airborne X-band radar data. There were varying elevation biases between CryoSat-2 and the validation datasets. The best agreement was found for CryoSat-2 and ICESat-2 over the Helheim region in June 2019. To test the stability of the swath processor, we applied two different coherence thresholds. The number of data points was increased by approximately 25% when decreasing the coherence threshold in the processor from 0.8 to 0.6. However, depending on the region, this came with the cost of an increase of 33–65% in standard deviation of the intramission differences. Our study highlights the importance of selecting an appropriate coherence threshold for the swath processor. Coherence threshold should be chosen on a case-specific basis depending on the need for enhanced spatial coverage or accuracy.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...