GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cells, MDPI AG, Vol. 11, No. 19 ( 2022-09-25), p. 2987-
    Abstract: Cachexia is characterized by progressive weight loss accompanied by the loss of specific skeletal muscle and adipose tissue. Increased lactate production, either due to the Warburg effect from tumors or accelerated glycolysis effects from cachectic muscle, is the most dangerous factor for cancer cachexia. This study aimed to explore the efficiency of 2-deoxy-D-glucose (2-DG) in blocking Cori cycle activity and its therapeutic effect on cachexia-associated muscle wasting. A C26 adenocarcinoma xenograft model was used to study cancer cachectic metabolic derangements. Tumor-free lean mass, hindlimb muscle morphology, and fiber-type composition were measured after in vivo 2-DG administration. Activation of the ubiquitin-dependent proteasome pathway (UPS) and autophagic–lysosomal pathway (ALP) was further assessed. The cachectic skeletal muscles of tumor-bearing mice exhibited altered glucose and lipid metabolism, decreased carbohydrate utilization, and increased lipid β-oxidation. Significantly increased gluconeogenesis and decreased ketogenesis were observed in cachectic mouse livers. 2-DG significantly ameliorated cancer cachexia-associated muscle wasting and decreased cachectic-associated lean mass levels and fiber cross-sectional areas. 2-DG inhibited protein degradation-associated UPS and ALP, increased ketogenesis in the liver, and promoted ketone metabolism in skeletal muscle, thus enhancing mitochondrial bioenergetic capacity. 2-DG effectively prevents muscle wasting by increasing ATP synthesis efficiency via the ketone metabolic pathway and blocking the abnormal Cori cycle.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Micromachines Vol. 14, No. 8 ( 2023-08-14), p. 1600-
    In: Micromachines, MDPI AG, Vol. 14, No. 8 ( 2023-08-14), p. 1600-
    Abstract: In this paper, an improved empirical formula modeling method using neuro-space mapping (Neuro-SM) for coupled microstrip lines is proposed. Empirical formulas with correction values are used for the coarse model, avoiding a slow trial-and-error process. The proposed model uses mapping neural networks (MNNs), including both geometric variables and frequency variables to improve accuracy with fewer variables. Additionally, an advanced method incorporating simple sensitivity analysis expressions into the training process is proposed to accelerate the optimization process. The experimental results show that the proposed model with its simple structure and an effective training process can accurately reflect the performance of coupled microstrip lines. The proposed model is more compatible than models in existing simulation software.
    Type of Medium: Online Resource
    ISSN: 2072-666X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2620864-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 12, No. 17 ( 2020-08-25), p. 2744-
    Abstract: Global Navigation Satellite Systems (GNSS) tomography plays an important role in the monitoring and tracking of the tropospheric water vapor. In this study, a new approach for improving the node-based GNSS tomography is proposed, which makes a trade-off between the real observed region and the complexity of the discretization of the tomographic region. To obtain dynamically the approximate observed region, the convex hull algorithm and minimum bounding box algorithm are used at each tomographic epoch. This new approach can dynamically define the tomographic model for all types of study areas based on the GNSS data. The performance of the new approach is tested by comparing it against the common node-based GNSS tomographic approach. Test data in May 2015 are obtained from the Hong Kong GNSS network to build the tomographic models and the radiosonde data as a reference are used for validating the quality of the new approach. The experimental results show that the root-mean-square errors of the new approach, in most cases, have a 38 percent improvement and the values of standard deviation reduce to over 43 percent compared with the common approach. The results indicate that the new approach is applicable to the node-based GNSS tomography.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Micromachines, MDPI AG, Vol. 14, No. 9 ( 2023-09-10), p. 1757-
    Abstract: BiCuSeO has great application prospects in thermoelectric power generation and thermoelectric catalysis, but it is limited by its lower thermoelectric performance. Herein, BiCuSeO bulk materials were prepared using a solid-phase reaction method and a ball-milling method combined with spark plasma sintering, and then the thermoelectric properties were improved by synergistically increasing carrier concentration and mobility. Al was adopted to dope into the BiCuSeO matrix, aiming to adjust the carrier mobility through energy band adjustment. The results show that Al doping would widen the bandgap and enhance the carrier mobility of BiCuSeO. After Al doping, the thermoelectric properties of the material are improved in the middle- and high-temperature range. Based on Al doping, Pb is adopted as the doping element to dope BiCuSeO to modify the carrier concentration. The results show that Al/Pb dual doping in the BiCuSeO matrix can increase the carrier concentration under the premise of increasing carrier mobility. Therefore, the electrical conductivity of BiCuSeO can be improved while maintaining a large Seebeck coefficient. The power factor of Al/Pb doping reached ~7.67 μWcm−1K−2 at 873 K. At the same time, the thermal conductivity of all doped samples within the test temperature range maintained a low level ( 〈 1.2 Wm−1K−1). Finally, the ZT value of the Al/Pb-doped BiCuSeO reached ~1.14 at 873 K, which is ~2.72 times that of the pure phase, and the thermoelectric properties of the matrix were effectively improved.
    Type of Medium: Online Resource
    ISSN: 2072-666X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2620864-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Electronics Vol. 10, No. 14 ( 2021-07-15), p. 1699-
    In: Electronics, MDPI AG, Vol. 10, No. 14 ( 2021-07-15), p. 1699-
    Abstract: The application of the finite control set model predictive control to cascaded inverters is severely limited by its computational complexity. In this paper, a load observer based multilayer model predictive control is proposed for the voltage mode digital power amplifier employing cascaded full-bridge neutral point clamped inverter, which can avoid the use of load current sensor and greatly reduce the controller computation without affecting its dynamic performance. The discrete mathematical model of the voltage mode digital power amplifier employing cascaded full-bridge neutral point clamped inverter is established with filter inductor current and filter capacitor voltage as state variables. A load current observer is designed based on this to avoid the use of load current observer. Based on the discrete model and the observed load current, the upper layer of the multilayer model predictive control determines the optimal level that minimizes the cost function. The middle layer allocates the optimal level to each submodule in order to achieve capacitor voltage balancing. The lower layer determines the switching state of each submodule in order to reduce switching actions. Finally, the experimental results based on the designed nine-level prototype show that the develop multilayer model predictive control lead to acceptable steady state, dynamic and robust performance, with only 1.37% of the run time of the traditional model predictive control.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662127-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 22 ( 2022-11-08), p. 13704-
    Abstract: Tert-butylperoxy-2-ethylhexanoate (TBPEH) and tert-butyl peroxybenzoate (TBPB) promote the radical acylation of allyl ester with benzaldehyde to synthesize new carbonyl-containing compounds under solvent-free and metal-free conditions. This reaction is compatible with electron-donating and halogen groups and has excellent atom utilization and chemical selectivity. Furthermore, the synthetic compounds can further apply to the preparation of lactone, piperidine, tetrazole and oxazole.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Photonics Vol. 9, No. 5 ( 2022-04-28), p. 303-
    In: Photonics, MDPI AG, Vol. 9, No. 5 ( 2022-04-28), p. 303-
    Abstract: The existence of an anisotropic tensor part of atomic states with an angular momentum greater than 1/2 causes their dynamic polarizabilities to be very sensitive to the polarization direction of the laser field. Therefore, the magic wavelength of the transition between two atomic states also depends on the polarization angle between the quantized axis and the polarization vector. We perform a calculation of the magic conditions of the 6S1/2↔nP3/2 (n = 50–90) Rydberg transition of cesium atoms by introducing an auxiliary electric diople transition connected to the target Rydberg state and a low-excited state. The magic condition is determined by the intersection of dynamic polarizabilities of the 6S1/2 ground state and the nP3/2 Rydberg state. The dynamic polarizability is calculated by using the sum-over-states method. Furthermore, we analyze the dependence of magic detuning on the polarization angle for a linearly polarized trapping laser and establish the relationship between magic detuning and a principal quantum number of the Rydberg state at the magic angle. The magic optical dipole trap can confine the ground-state and Rydberg-state atoms simultaneously, and the differential light shift in the 6S1/2↔nP3/2 transition can be canceled under the magic condition. It is of great significance for the application of long-lifetime high-repetition-rate accurate manipulation of Rydberg atoms on high-fidelity entanglement and quantum logic gate operation.
    Type of Medium: Online Resource
    ISSN: 2304-6732
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2770002-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 15 ( 2022-07-31), p. 8515-
    Abstract: Type III CRISPR-Cas systems show the target (tg)RNA-activated indiscriminate DNA cleavage and synthesis of oligoadenylates (cOA) and a secondary signal that activates downstream nuclease effectors to exert indiscriminate RNA/DNA cleavage, and both activities are regulated in a spatiotemporal fashion. In III-B Cmr systems, cognate tgRNAs activate the two Cmr2-based activities, which are then inactivated via tgRNA cleavage by Cmr4, but how Cmr4 nuclease regulates the Cmr immunization remains to be experimentally characterized. Here, we conducted mutagenesis of Cmr4 conserved amino acids in Saccharolobus islandicus, and this revealed that Cmr4α RNase-dead (dCmr4α) mutation yields cell dormancy/death. We also found that plasmid-borne expression of dCmr4α in the wild-type strain strongly reduced plasmid transformation efficiency, and deletion of CRISPR arrays in the host genome reversed the dCmr4α inhibition. Expression of dCmr4α also strongly inhibited plasmid transformation with Cmr2αHD and Cmr2αPalm mutants, but the inhibition was diminished in Cmr2αHD,Palm. Since dCmr4α-containing effectors lack spatiotemporal regulation, this allows an everlasting interaction between crRNA and cellular RNAs to occur. As a result, some cellular RNAs, which are not effective in mediating immunity due to the presence of spatiotemporal regulation, trigger autoimmunity of the Cmr-α system in the S. islandicus cells expressing dCmr4α. Together, these results pinpoint the crucial importance of tgRNA cleavage in autoimmunity avoidance and in the regulation of immunization of type III systems.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Agriculture Vol. 11, No. 12 ( 2021-12-08), p. 1239-
    In: Agriculture, MDPI AG, Vol. 11, No. 12 ( 2021-12-08), p. 1239-
    Abstract: According to the agronomic requirements of garlic sowing, the garlic morphology is studied and a garlic seed metering mechanism with excellent seeding performance is designed. Based on this design, a new garlic seeding machine with an adjustable-size seeding device is developed to realize efficient single-seed metering and seeding of different varieties of garlic. Further, the design scheme of the garlic seeder prototype is established, with the key components of the garlic seeding being designed on the basis of the garlic seeding mechanism. To achieve garlic single-seed metering for different varieties of garlic, the optimal adjustment size of the garlic seed metering device is determined through discrete element simulation analysis. A field experiment confirms the effectiveness of applying the proposed garlic planter to field sowing in terms of the metrics of missing seed and multiple seed rates. The results of the discrete element simulation test reveal that an adjustment size of 40 mm yields the best single-seed metering performance. At an operating speed of 15–35 rpm, the metering device can achieve more than an 80% qualification rate of single-seed metering, with a unit speed of 0.628–1.465 m/s. Thus, the developed garlic seeding device meets the requirements of precision sowing in China and can effectively realize the mechanized planting of garlic.
    Type of Medium: Online Resource
    ISSN: 2077-0472
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2651678-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Materials Vol. 17, No. 1 ( 2023-12-24), p. 102-
    In: Materials, MDPI AG, Vol. 17, No. 1 ( 2023-12-24), p. 102-
    Abstract: W-Re alloys are one of the most important refractory materials with excellent high-temperature performance that were developed to improve the brittleness of tungsten. In the present work, we firstly summarized the research progress on the preparation and strengthening methods of a W-Re alloy. Then, the strengthening mechanisms of the W-Re alloy were discussed, including the influence of Re, solid solution strengthening, second-phase reinforcement and fine-grain strengthening. The results showed that the softening effect of Re was mainly related to the transformation of the preferred slip plane and the introduction of additional d-valence electrons. Some transition elements and refractory metal elements effectively strengthened the W-Re alloy. Carbides can significantly enhance the high-temperature mechanical properties of W-Re alloys, and the reasons are twofold: one is the interaction between carbides and dislocations, and the other is the synergistic strengthening effect between carbides and Re. The objective of this work was to enhance the comprehension on W-Re alloys and provide future research directions for W-Re alloys.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...