GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cells, MDPI AG, Vol. 11, No. 19 ( 2022-10-05), p. 3130-
    Abstract: Recurrent spontaneous abortion (RSA) is a highly heterogeneous complication of pregnancy with the underlying mechanisms remaining uncharacterized. Dysregulated decidualization is a critical contributor to the phenotypic alterations related to pregnancy complications. To understand the molecular factors underlying RSA, we explored the role of longnoncoding RNAs (lncRNAs) in the decidual microenvironment where the crosstalk at the fetal–maternal interface occurs. By exploring RNA-seq data from RSA patients, we identified H19, a noncoding RNA that exhibits maternal monoallelic expression, as one of the most upregulated lncRNAs associated with RSA. The paternally expressed fetal mitogen IGF2, which is reciprocally coregulated with H19 within the same imprinting cluster, was also upregulated. Notably, both genes underwent loss of imprinting, as H19 and IGF2 were actively transcribed from both parental alleles in some decidual tissues. This loss of imprinting in decidual tissues was associated with the loss of the H3K27m3 repressive histone marker in the IGF2 promoter, CpG hypomethylation at the central CTCF binding site in the imprinting control center (ICR), and the loss of CTCF-mediated intrachromosomal looping. These data suggest that dysregulation of the H19/IGF2 imprinting pathway may be an important epigenetic factor in the decidual microenvironment related to poor decidualization.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 15, No. 4 ( 2023-02-18), p. 1129-
    Abstract: It has become undeniable that global land surface temperature (LST) has continued to rise in recent years. The threat of extreme heat to humans has become self-evident, especially in arid regions. Many studies have clarified the temperature rise/fall mechanism of LST from the perspective of influencing factors. However, there are few studies on mitigating LST from the standpoint of regional networks. This paper first combines Landsat 8 with Sentinel-2 imagery for LST downscaling based on the Google Earth engine as a way to match local climate zone (LCZ) with 17 classification types. Then, the thermal environment resistance surface is constructed according to LCZ, and the essential cold sources are identified using morphological spatial pattern analysis (MSPA) and circuit theory to form the thermal environment green corridor and obtain the pinch point and barrier point areas. The results show that (1) The downscaling of LST based on random forest (RF) for the Urumqi–Changji–Wujiaqu metropolitan area has an R2 of 0.860 and an RMSE of 3.23, with high downscaling accuracy. (2) High temperature (HT), medium temperature (MT), and low temperature (LT) have the largest proportions in the study area; HT dominates in Urumqi, LT in Changji, and MT in Wujiaqu. (3) The natural types (LCZ-D, LCZ-C, and LCZ-F) in the LCZ classification occupy a large area, and the building types are mainly concentrated in Urumqi; LCZ-D, LCZ-G, and LCZ-A contribute the most to the cooling of LST, and LCZ-F, LCZ-C, and LCZ-10 contribute the most to the warming of LST. (4) After identifying critical cold source patches according to MSPA to arrive at 253 green corridors, subsensitive corridors and sensitive corridors need to take certain measures to prevent corridor blockage; pinch point areas, as well as barrier point areas, need to be protected and repaired according to their respective characteristics. In summary, corresponding cooling measures to specific areas can improve the connectivity between cooling sources and slow down the temperature increase of the whole area. This study and experimental approach can provide new insights for urban planners and climate researchers.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Sustainability, MDPI AG, Vol. 14, No. 17 ( 2022-08-26), p. 10663-
    Abstract: Changes in land surface temperature (LST) can have serious impacts on the water cycle and ecological environment evolution, which in turn threaten the sustainability of ecosystems. The urban agglomeration on the northern slopes of the Tianshan Mountains (UANSTM) is located in the arid and semi-arid regions of northwest China, with an extremely fragile ecological environment and sensitive to climate change. However, studies on the LST of the UANSTM have not received much attention. Therefore, this study explored the spatial distribution pattern, fluctuation characteristics, and influencing factors of the LST of the UANSTM from 2005 to 2021 based on MODIS time series LST data and the geo-detector model with optimal parameters. The results show that the UANSTM is dominated by medium- and high-temperature classes, with high- and extremely high-temperature classes clustered in Turpan City. The daytime and nighttime LST patterns are significantly different, with a typical “daytime cold island and nighttime heat island” feature in the oasis region. During 2005–2021, LST fluctuated greatly in the northwestern part of the UANSTM, with LST showing an increasing trend during both daytime and nighttime, and the warming rate was more intense during daytime than nighttime. The increasing trend of LST in Urumqi, Changji Hui Autonomous Prefecture, Shihezi, and Wujiaqu is very significant and will remain consistent in the future. Precipitation, DEM, and AOD are the most important influencing factors of LST in the UANSTM, where precipitation and DEM are negatively correlated with LST, and AOD is positively correlated with LST. Land cover factors (LULC, NDVI,, and NDBSI) are the next most influential, and socioeconomic factors (NTL, GDP, and POP) are the least influential. The results of this study can provide a scientific reference for the conservation and sustainable development of the ecological environment of the UANSTM.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Environmental Research and Public Health Vol. 19, No. 8 ( 2022-04-08), p. 4515-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 8 ( 2022-04-08), p. 4515-
    Abstract: Disaster preparation can reduce the impact of an earthquake on residents. Residents are more likely to undertake disaster preparedness if they perceive it to be effective. However, few studies have analyzed the influence of trust on this perception. This study surveyed 327 households in areas stricken by the Wenchuan and Lushan earthquakes to explore these issues. Trust was divided into government trust, emotional trust, and social trust, while the efficacy of disaster preparedness was divided into self-efficacy and response efficacy. A partial least squares structural equation model was used to explore the influence of trust on perceptions of the efficacy of disaster preparedness. The results show that: (1) government trust can directly increase perceived efficacy and indirectly increase self-efficacy via emotional trust; (2) emotional trust can directly increase self-efficacy; (3) social trust can directly reduce self-efficacy while indirectly increasing it by increasing emotional trust. This study deepens our understanding of the relationship between trust and perceptions of the efficacy of disaster preparedness. This study can provide inspiration to improve risk communication and construct systems of community-based disaster-prevention.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 20 ( 2022-10-11), p. 13067-
    Abstract: An in-depth study of the influence mechanism of oasis land surface temperature (LST) in arid regions is essential to promote the stable development of the ecological environment in dry areas. Based on MODIS, MYD11A2 long time series data from 2003 to 2020, the Mann–Kendall nonparametric test, the Sen slope, combined with the Hurst index, were used to analyze and predict the trend of LST changes in the urban agglomeration on the northern slopes of the Tianshan Mountains. This paper selected nine influencing factors of the slope, aspect, air temperature, normalized vegetation index (NDVI), precipitation (P), nighttime light index (NTL), patch density (PD), mean patch area (AREA_MN), and aggregation index (AI) to analyze the spatial heterogeneity of LST from global and local perspectives using the geodetector (GD) model and multi-scale geo-weighted regression (MGWR) model. The results showed that the average LSTs of the urban agglomeration on the northern slopes of the Tianshan Mountains in spring, summer, autumn, and winter were 31.53 °C, 47.29 °C, 22.38 °C, and −5.20 °C in the four seasons from 2003 to 2020, respectively. Except for autumn, the LST of all seasons showed an increasing trend, bare soil and grass land had a warming effect, and agricultural land had a cooling effect. The results of factor detection showed that air temperature, P, and NDVI were the dominant factors affecting the spatial variation of LST. The interaction detection results showed that the interaction between air temperature and NDVI was the most significant, and the two-factor interaction was more effective than the single-factor effect on LST. The MGWR model results showed that the effects of PD on LST were positively correlated, and the impact of AREA_MN and AI on LST were negatively correlated, indicating that the dense landscape of patches has a cooling effect on LST. Overall, this study provides information for managers to carry out more targeted ecological stability regulations in arid zone oases and facilitates the development of regulatory measures to maintain the cold island effect and improve the environment.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Materials, MDPI AG, Vol. 16, No. 9 ( 2023-04-27), p. 3411-
    Abstract: Heterostructure construction and heteroatom doping are powerful strategies for enhancing the electrolytic efficiency of electrocatalysts for overall water splitting. Herein, we present a P-doped MoS2/Ni3S2 electrocatalyst on nickel foam (NF) prepared using a one-step hydrothermal method. The optimized P[0.9mM]-MoS2/Ni3S2@NF exhibits a cluster nanoflower-like morphology, which promotes the synergistic electrocatalytic effect of the heterostructures with abundant active centers, resulting in high catalytic activity for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolyte. The electrode exhibits low overpotentials and Tafel slopes for the HER and OER. In addition, the catalyst electrode used in a two-electrode system for overall water splitting requires an ultralow voltage of 1.42 V at 10 mA·cm−2 and shows no obvious increase in current within 35 h, indicating excellent stability. Therefore, the combination of P doping and the heterostructure suggests a novel path to formulate high-performance electrocatalysts for overall water splitting.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nanomaterials, MDPI AG, Vol. 13, No. 9 ( 2023-04-24), p. 1452-
    Abstract: Color displays have become increasingly attractive, with dielectric optical nanoantennas demonstrating especially promising applications due to the high refractive index of the material, enabling devices to support geometry-dependent Mie resonance in the visible band. Although many structural color designs based on dielectric nanoantennas employ the method of artificial positive adjustment, the design cycle is too lengthy and the approach is non-intelligent. The commonly used phase change material Ge2Sb2Te5 (GST) is characterized by high absorption and a small contrast to the real part of the refractive index in the visible light band, thereby restricting its application in this range. The Sb2S3 phase change material is endowed with a wide band gap of 1.7 to 2 eV, demonstrating two orders of magnitude lower propagation loss compared to GST, when integrated onto a silicon waveguide, and exhibiting a maximum refractive index contrast close to 1 at 614 nm. Thus, Sb2S3 is a more suitable phase change material than GST for tuning visible light. In this paper, genetic algorithms and finite-difference time-domain (FDTD) solutions are combined and introduced as Sb2S3 phase change material to design nanoantennas. Structural color is generated in the reflection mode through the Mie resonance inside the structure, and the properties of Sb2S3 in different phase states are utilized to achieve tunability. Compared to traditional methods, genetic algorithms are superior-optimization algorithms that require low computational effort and a high population performance. Furthermore, Sb2S3 material can be laser-induced to switch the transitions of the crystallized and amorphous states, achieving reversible color. The large chromatic aberration ∆E modulation of 64.8, 28.1, and 44.1 was, respectively, achieved by the Sb2S3 phase transition in this paper. Moreover, based on the sensitivity of the structure to the incident angle, it can also be used in fields such as angle-sensitive detectors.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Processes Vol. 7, No. 7 ( 2019-07-13), p. 447-
    In: Processes, MDPI AG, Vol. 7, No. 7 ( 2019-07-13), p. 447-
    Abstract: In the thermal energy storage system, the thermal properties of phase change materials (PCM) have a great influence on the system performance. In this paper, paraffin-based composite phase change material with different graphite additive (expanded graphite, EG; graphene, GR; and graphene oxide, GO) and different concentrations (0.5 to 2.0%) are manufactured by a two-step method combining mechanical agitation and ultrasonic vibration. The characteristics of charge/discharge processes are studied, and the thermophysical properties are measured by T-history method. The experimental results show that the thermal conductivity and heat charge rate of the composite PCM are effectively improved by adding the graphite additive to the PCM, and the addition of additives can improve the melting point of the material. When the same graphite additive is added, the higher the concentration, the higher the thermal conductivity of the composite PCM, and the latent heat decreases with the increase of concentration. When adding the same amount of carbon additives, the graphene/paraffin composite PCM has the highest heat charge/discharge rate and thermal conductivity. It is finally concluded that graphene is the most promising candidate for heat transfer enhancement of paraffin among three carbon additives even though the EG-based composite PCM gives relatively high latent heat.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Minerals, MDPI AG, Vol. 13, No. 10 ( 2023-09-29), p. 1275-
    Abstract: Phosphate ore is an important strategic mineral resource. The efficient utilization of phosphate resources faces challenges such as low grade of raw ore and difficulty in discharging gangue minerals. One of the key problems to be solved urgently in the reverse flotation of phosphate ore is the effective depression of apatite. However, research on the influence mechanism of acid depressants on the surface properties and adsorption characteristics of apatite is still insufficient. In this study, the influence of different depressants (such as sulfuric acid, phosphoric acid or mixed acid of sulfur acid and phosphorus acid) on the flotation separation performance of an artificial mixture of apatite and dolomite (gangue mineral) was investigated through laboratory flotation tests. On this basis, with the addition of different depressants, the contact angle, zeta potential, XPS and TOC were used to investigate the surface wettability, surface charge, surface species and the adsorption characteristics of the collector (sodium oleate) on the apatite surface, and, accordingly, the inhibiting mechanism was discussed. The results show that, when mixed acid of sulfur acid and phosphorus acid is used as a depressant, a concentrate with a P2O5 grade of 33.53% and a recovery of 88.92% can be obtained, and the parameters are better than when using phosphoric acid with a P2O5 grade of 30.15% and a recovery of 80.12% or sulfuric acid with a P2O5 grade of 30.12% and a recovery of 80.58%. Our analysis shows that the mixed acid has the best inhibiting effect on apatite, which is mainly due to the following: (a) after adding the mixed acid, chemicals such as CaSO4, CaHPO4/Ca(H2PO4)2 are generated on the surface of apatite, resulting in a significant reduction in the contact angle and stronger surface hydrophilicity; (b) the mixed acid reduces the zeta potential of apatite, produces new species and weakens the non-selective adsorption of negatively charged oleate on the surface of apatite, thus preventing the apatite from floating.
    Type of Medium: Online Resource
    ISSN: 2075-163X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2655947-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 24, No. 1 ( 2022-12-27), p. 459-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 1 ( 2022-12-27), p. 459-
    Abstract: Glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme of the pentose phosphate pathway (PPP), plays a pivotal role in plant stress responses. However, the function and mechanism of G6PDHs in crop plants challenged by fungal pathogens remain poorly understood. In this study, a wheat G6DPH gene responding to infection by Puccinia striiformis f. sp. tritici (Pst), designated TaG6PDH2, was cloned and functionally identified. TaG6PDH2 expression was significantly upregulated in wheat leaves inoculated with Pst or treated with abiotic stress factors. Heterologous mutant complementation and enzymatic properties indicate that TaG6PDH2 encodes a G6PDH protein. The transient expression of TaG6PDH2 in Nicotiana benthamiana leaves and wheat protoplasts revealed that TaG6PDH2 is a chloroplast-targeting protein. Silencing TaG6PDH2 via the barley stripe mosaic virus (BSMV)-induced gene silencing (VIGS) system led to compromised wheat resistance to the Pst avirulent pathotype CYR23, which is implicated in weakened H2O2 accumulation and cell death. In addition, TaG6PDH2 was confirmed to interact with the wheat glutaredoxin TaGrxS4. These results demonstrate that TaG6PDH2 endows wheat with increased resistance to stripe rust by regulating reactive oxygen species (ROS) production.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...