GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (84)
  • 1
    In: Agronomy, MDPI AG, Vol. 12, No. 10 ( 2022-09-23), p. 2287-
    Abstract: Mustard, which belongs to the family Brassicaceae, is an annual or biennial herb and is considered as one of the most important native vegetables in China. Glucosinolates are important secondary metabolites containing sulfur and nitrogen in plants, which form a network with other metabolic pathways that play important roles in plant growth, development, and interaction with the environment. We studied varied phenotypic and glucosinolate contents of 60 mustard resources collected from various areas of China. The results showed both agronomic traits and glucosinolates varied greatly among mustard resources. We detected nine glucosinolates in mustard resources and the contents of total glucosinolates ranged from 1.2023 to 30.7310 μmol/g. Through the correlation analysis, we preliminarily found a significant negative correlation between leaf color and glucosinolate contents but needed further validation. For mustard resource JC 18-56, we analyzed the glucosinolate contents in different organs of different growth stages. The results indicated a significant difference among organs in both glucosinolates concentration and composition. The contents of glucosinolatess in alabastrums at bolting stage were highest, up to 140.1257 μmol/g dry weight (DW). We found that the main glucosinolates in roots were 4-methoxyglucobrassicin, while in other organs the glucosinolates were sinigrin. The contents of glucosinolatess in different organs of mustard were as follows: alabastrums 〉 seeds 〉 flowers 〉 siliques 〉 leaves 〉 flower stems 〉 stems 〉 roots. This study provides important references for the selection and cultivation of high-quality mustard varieties.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Horticulturae, MDPI AG, Vol. 8, No. 9 ( 2022-09-18), p. 851-
    Abstract: The study of the regulatory mechanism of exogenous plant growth regulators (PGRs) on the relevant physiological indicators is essential to maintain the normal growth of Rosa hybrida under high-temperature conditions. The photosynthetic and physiological characteristics of the ornamental cut rose Rosa hybrida ‘Carolla’ under high temperature were studied by spraying leaves with various concentrations of exogenous salicylic acid (SA; 0.5, 1.0, 1.5, or 2.0 mmol·L−1), 6-benzylaminopurine (6-BA; 10, 20, 30, or 50 μmol·L−1), abscisic acid (ABA; 10, 20, 30, or 50 mg·L−1), or distilled water (control). The results indicated that a foliar spray of either SA, 6-BA, or ABA could mitigate the impact of high temperatures. Compared to the control, the application of SA, 6-BA, or ABA increased the net CO2 assimilation rate (An), transpiration rate (E), stomatal conductance (Gs), and water use efficiency (WUE) of ‘Carolla’, while decreasing the leaf relative electrical conductivity (REC) and malondialdehyde (MDA) content. The applications of SA, 6-BA, or ABA increased the activities of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) and altered the proline (Pro), soluble protein, and soluble sugar contents. The results showed that foliar sprays of SA, 6-BA, or ABA could enhance the heat tolerance of ‘Carolla’ by promoting photosynthesis, cell membrane structural stability, antioxidant enzyme activity, and osmoregulation in plants under high-temperature stress. The experiment showed that 1.5 mmol·L−1 SA, 20 μmol·L−1 6-BA, or 75 μmol·L−1 ABA could alleviate the damage caused by high temperatures, with 20 μmol·L−1 6-BA having the best effect.
    Type of Medium: Online Resource
    ISSN: 2311-7524
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2813983-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nanomaterials, MDPI AG, Vol. 10, No. 9 ( 2020-09-02), p. 1740-
    Abstract: Single nanowires (NWs) are of great importance for optoelectronic applications, especially solar cells serving as powering nanoscale devices. However, weak off-resonant absorption can limit its light-harvesting capability. Here, we propose a single NW coated with the graded-index dual shells (DSNW). We demonstrate that, with appropriate thickness and refractive index of the inner shell, the DSNW exhibits significantly enhanced light trapping compared with the bare NW (BNW) and the NW only coated with the outer shell (OSNW) and the inner shell (ISNW), which can be attributed to the optimal off-resonant absorption mode profiles due to the improved coupling between the reemitted light of the transition modes of the leak mode resonances of the Si core and the nanofocusing light from the dual shells with the graded refractive index. We found that the light absorption can be engineered via tuning the thickness and the refractive index of the inner shell, the photocurrent density is significantly enhanced by 134% (56%, 12%) in comparison with that of the BNW (OSNW, ISNW). This work advances our understanding of how to improve off-resonant absorption by applying graded dual-shell design and provides a new choice for designing high-efficiency single NW photovoltaic devices.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Horticulturae, MDPI AG, Vol. 8, No. 5 ( 2022-04-28), p. 389-
    Abstract: Anthurium andreanum was one of the best indoor ornamental plants. Two cultivars of Anthurium andreanum (Pink Champion, Alabama) were used to investigate the effects of light quality on physiological and biochemical indexes. There were six different light quality treatments: Fluorescent Daylight Lamp (CK), and RB (100% Blue, 60% R + 40% B, 70% R + 30% B, 80% R + 20% B, 100% Red) provided by light emitting diodes (LED). The results showed that blue light was beneficial to shoot growth and dry matter accumulation, photosynthetic rate, soluble sugar, and POD activities. Red light was beneficial for the synthesis and accumulation of soluble protein, and could promote root growth. ‘Pink Champion’ and ‘Alabama’ obtained the relatively better morphological parameters, chlorophyll contents, photosynthetic parameters, and antioxidant enzyme activities in 7:3 and 6:4 treatments. The antioxidant enzyme (POD, SOD) activities under composite light of red and blue treatments were better than that of monochromatic red, blue light treatments and CK on the whole. Comprehensive evaluation showed that the treatment of 7:3 was a suitable light environment indoors and could be used as the preferred light quality ratio in the production and application of Anthurium andreanum.
    Type of Medium: Online Resource
    ISSN: 2311-7524
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2813983-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Horticulturae, MDPI AG, Vol. 8, No. 10 ( 2022-10-21), p. 980-
    Abstract: This study was designed to investigate the effects of exogenous calcium on the tolerance of Rosa hybrida ‘Carolla’ to high-temperature and the physiological mechanisms underlying this response. Leaves of ‘Carolla’ grown under stress were treated by spraying four different concentrations of calcium chloride (CaCl2; 50, 100, 150, or 200 μM). The photosynthetic responses, antioxidant enzyme activities, and osmotic substance contents were measured under high-temperature stress at the flowering stage. Temperature-stressed ‘Carolla’ with CaCl2 treatment showed significantly increased chlorophyll (Chl) content, net photosynthetic rate (An), transpiration rate (E), stomatal conductance (gs), water use efficiency (WUE), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) activities together with proline (Pro), soluble sugar (SS), and soluble protein (SP) concentrations, while malonaldehyde (MDA) content and relative electrical conductivity (REC) were significantly reduced. The damages caused by high-temperature stress were alleviated by applying CaCl2. Among the CaCl2 treatments, 100 μM CaCl2 best minimized the damage caused by high-temperature to ‘Carolla’. This study showed that exogenous calcium could improve the tolerance of Rosa hybrida ‘Carolla’ to high-temperature stress by regulating photosynthesis, the antioxidant system, and osmotic substances.
    Type of Medium: Online Resource
    ISSN: 2311-7524
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2813983-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 20, No. 12 ( 2019-06-18), p. 2968-
    Abstract: Tissue and cell damage caused by ionizing radiation is often highly genotoxic. The swift repair of DNA damage is crucial for the maintenance of genomic stability and normal cell fitness. Long noncoding RNAs (lncRNAs) have been reported to play an important role in many physiological and pathological processes in cells. However, the exact function of lncRNAs in radiation-induced DNA damage has yet to be elucidated. Therefore, this study aimed to analyze the potential role of lncRNAs in radiation-induced DNA damage. We examined the expression profiles of lncRNAs and mRNAs in 293T cells with or without 8 Gy irradiation using high-throughput RNA sequencing. We then performed comprehensive transcriptomic and bioinformatic analyses of these sequencing results. A total of 18,990 lncRNAs and 16,080 mRNAs were detected in all samples. At 24 h post irradiation, 49 lncRNAs and 323 mRNAs were differentially expressed between the irradiation group and the control group. qRT-PCR was used to verify the altered expression of six lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the predicted genes were mainly involved in the histone mRNA metabolic process and Wnt signaling pathways. This study may provide novel insights for the study of lncRNAs in radiation-induced DNA damage.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Materials, MDPI AG, Vol. 16, No. 3 ( 2023-01-29), p. 1149-
    Abstract: The mechanical properties of high-entropy alloys (HEAs) can be regulated by altering the stacking fault energy (SFE) through compositional modulation. The Co-rich HEAs, exhibiting deformation twinning and even strain-induced martensitic transformation at room temperature, suffer from insufficient ductility at high strength. In this work, we developed Co-rich (Co40Fe25Cr20Ni15)100−xAlx (x = 0 and 5 at.%) HEAs and investigated their tensile behaviors at room temperature. The addition of Al resulted in a massive improvement in the strength-ductility product, even at similar grain sizes, and also altered the fracture mode from quasi-cleavage to ductile dimple fracture. Interestingly, both alloys were deformed by mechanical twinning, which was also verified by molecular dynamics (MD) simulations. The MD simulations revealed the SFE increased upon Al addition; however, the slip energy barrier was reduced, which favored the mobility of dislocations and twinning propensity to prolong strain hardening. The present findings provide further insights into the regulation of mechanical properties of HEAs by Al-alloying.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Clinical Medicine, MDPI AG, Vol. 12, No. 6 ( 2023-03-14), p. 2243-
    Abstract: Glutamine has been recognized as an important amino acid that provide a variety of intermediate products to fuel biosynthesis. Glutamine metabolism participates in the progression of the tumor via various mechanisms. However, glutamine-metabolism-associated signatures and its significance in prostate cancer are still unclear. In this current study, we identified five genes associated with glutamine metabolism by univariate and Lasso regression analysis and constructed a model to predict the biochemical recurrence free survival (BCRFS) of PCa. Further validation of the prognostic risk model demonstrated a good efficacy in predicting the BCRFS in PCa patients. Interestingly, based on the CIBERSORTx, ssGSEA and ESTIMATE algorithms predictions, we noticed a distinct immune cell infiltration and immune pathway pattern in the prediction of the two risk groups stratified by the risk model. Drug sensitivity prediction revealed that patients in the high-risk group were more suitable for chemotherapy. Last but not least, glutamine deprivation significantly inhibited cell growth in GLUL or ASNS knock down prostate cancer cell lines. Therefore, we proposed a novel prognostic model by using glutamine metabolism genes for PCa patients and identified potential mechanism of PCa progression through glutamine-related tumor microenvironment remodeling.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Journal of Marine Science and Engineering Vol. 9, No. 4 ( 2021-04-01), p. 373-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 9, No. 4 ( 2021-04-01), p. 373-
    Abstract: In this study, the effect of joint optimization of the principal dimensions and hull form on the hydrodynamic performance of a bulk carrier was studied. In the first part of the joint optimization process, fast principal-dimension optimization of the origin parent ship considering the integrated performance of ship resistance, seakeeping, and maneuverability, as well as their relationships with the principal dimensions were analyzed in detail based on the ship resistance, seakeeping qualities, and maneuverability empirical methods of Holtrop and Mennen, Bales, and K and T indices, respectively. A new parent ship was chosen from 496 sets of hulls after comprehensive consideration. In the remaining part, a further hull form optimization was performed on the new parent ship according to the minimum wave-making resistance. The obtained results demonstrate that: (a) For the case in which the principal dimension of the original parent-type ship is different from that of the owner’s target ship, within the bounds of the relevant constraints from the owner, an excellent parent ship can be obtained by principal-dimension optimization; (b) the joint optimization method considering the principal dimension and hull form optimization can further explore the optimization space and provide a better hull.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 13 ( 2023-06-27), p. 10715-
    Abstract: Paeonia ostii is a worldwide ornamental flower and an emerging oil crop. Zyotic embryogenesis is a critical process during seed development, and it can provide a basis for improving the efficiency of somatic embryogenesis (SE). In this study, transcriptome sequencing of embryo development was performed to investigate gene expression profiling in P. ostii and identified Differentially expressed genes (DEGs) related to transcription factors, plant hormones, and antioxidant enzymes. The results indicated that IAA (Indole-3-acetic acid), GA (Gibberellin), BR (Brassinosteroid) and ETH (Ethylene) were beneficial to early embryonic morphogenesis, while CTK (Cytokinin) and ABA (Abscisic Acid) promoted embryo morphogenesis and maturation. The antioxidant enzymes’ activity was the highest in early embryos and an important participant in embryo formation. The high expression of the genes encoding fatty acid desaturase was beneficial to fast oil accumulation. Representative DEGs were selected and validated using qRT-PCR. Protein-protein interaction network (PPI) was predicted, and six central node proteins, including AUX1, PIN1, ARF6, LAX3, ABCB19, PIF3, and PIF4, were screened. Our results provided new insights into the formation of embryo development and even somatic embryo development in tree peonies.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...