GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (24)
  • 1
    In: Applied Sciences, MDPI AG, Vol. 12, No. 14 ( 2022-07-07), p. 6889-
    Abstract: Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. Tracheiphilum, is a serious threat to cowpea production worldwide. Understanding the genetic architecture of FW resistance is a prerequisite to combatting this disease and developing FW resistance varieties. In the current study, a genetic diversity panel of 99 cowpea accessions was collected, and they were infected by a single strain, FW-HZ. The disease index (DI) based on the two indicators of leaf damage (LFD) and vascular discoloration (VD) varied highly across the population: most accessions were susceptible, and only seven accessions showed resistant phenotypes by both indicators. Through a genome-wide association study (GWAS), 3 and 7 single nucleotide polymorphisms (SNPs) significantly associated with LFD and VD were detected, respectively, which were distributed on chromosomes 3, 4, 5, 6 and 9, accounting for 0.68–13.92% of phenotypic variation. Based on the cowpea reference genome, 30 putative genes were identified and proposed as the likely candidates, including leucine-rich repeat protein kinase family protein, protein kinase superfamily protein and zinc finger family protein. These results provide novel insights into the genetic architecture of FW resistance and a basis for molecular breeding of FW resistant cultivars in cowpea.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Agronomy, MDPI AG, Vol. 9, No. 3 ( 2019-03-22), p. 150-
    Abstract: Rational crop community structure plays an important role in maximizing the intercropping yield advantage. Effects of increasing maize densities in maize (Zea mays L.)/peanut (Arachis hypogaea L.) intercropping on yields and other agronomic traits, and the community stability of productivity were conducted across three different experimental sites. There were significant and positive correlations between maize densities and both maize grain/biomass yields and corresponding partial land equivalent ratios (LERs) across all three locations; but grain/biomass yields and partial LERs of peanut were all negatively correlated with maize densities in each or across all locations. LERs of grain yields averaged over three locations ranged from 0.89 to 0.98, while LERs of biomass yields ranged from 0.94 to 1.09 ( 〉 1.0 except for the maize inter-plant distance of 27 cm), indicating the intercropping advantage on biomass yields but not grain yields. Peanut had significantly lower kernel harvest indexes than those in monoculture. Excessive narrowing maize inter-plant distances reduced the community stability of productivity severely (especially for maize and total LERs) and are more likely to lead to abnormal maize and peanut plants. Therefore, a rational increase of maize densities in intercropping is suggested to keep the balance between maize and peanut and the comprehensive yield advantage.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Agronomy, MDPI AG, Vol. 13, No. 3 ( 2023-03-05), p. 755-
    Abstract: Cucurbits (Cucurbitaceae) include major horticultural crops with high nutritional and economic value that also serve as model plants for studying plant development and crop improvement. Conventional breeding methods have made important contributions to the production of cucurbit crops but have led to a breeding bottleneck because of the narrow genetic bases and low variation rates of these crops. With the development of molecular techniques, innovations in germplasm development through transgenesis and gene editing have led to breakthroughs in horticultural crop breeding. Although the development of genetic transformation and gene editing techniques for cucurbit crops has lagged behind that for other major crops, great progress has been made in recent years. Here, we summarize recent advances in improving the genetic transformation efficiency of cucurbit crops, including the screening of germplasm and the application of physical treatments, morphogenic genes, and selection markers. In addition, we review the application of gene editing technology to cucurbit crops, including CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated nuclease 9)-mediated gene knockout and base editing. This work provides a reference for improving genetic transformation efficiency and gene editing technology for cucurbit crops.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Polymers, MDPI AG, Vol. 14, No. 18 ( 2022-09-07), p. 3733-
    Abstract: Negative photosensitive polyimides (PSPIs) with the photo-patterned ability via the photocrosslinking reactions induced by the i-line (365 nm) and h-line (426 nm) emitting wavelengths in high-pressure mercury lamps have been paid increasing attention in semiconductor fabrication, optical fiber communications, and other advanced optoelectronic areas. In the current work, in view of the optical and thermo-mechanical disadvantages of the currently used negative PSPIs, such as the intrinsically photosensitive or auto-photosensitive systems derived from 3,3’,4,4’-benzophenonetetracarboxylic dianhydride (BTDA) and the ortho-alkyl- substituted aromatic diamines, a series of modified negative PSPIs with the enhanced optical transparency in the wavelength of 365~436 nm and apparently reduced coefficients of linear thermal expansion (CTE) were developed. For this purpose, a specific aromatic diamine with both of trifluoromethyl and benzanilide units in the molecular structures, 2,2’-bis(trifluoromethyl)-4,4’-bis[4-(4-amino-3-methyl)benzamide]biphenyl (MABTFMB) was copolymerized with BTDA and the standard 3,3’,5,5’-tetramethyl-4,4’-diaminodiphenylmethane (TMMDA) diamine via a two-step chemical imidization procedure. As compared with the pristine PI-1 (BTDA-TMMDA) system, the new-developed fluoro-containing PSPI systems (FPI-2~FPI-7) exhibited the same-level solubility in polar aprotic solvents, including N-methyl-2-pyrrolidone (NMP) and N,N- dimethylacetamide (DMAc). The FPI films cast from the corresponding FPI solutions in NMP showed the optical transmittances of 78.3–81.3% at the wavelength of 436 nm (T436, h-line), which were much higher than that of the PI-1 (T436 = 60.9%). The FPI films showed the CTE va lues in the range of 40.7 × 10−6/K to 54.0 × 10−6/K in the temperature range of 50 to 250 °C, which were obviously lower than that of PI-1 (CTE = 56.5 × 10−6/K). At last, the photosensitivity of the FPI systems was maintained and the micro-pattern with the line width of 10 μm could be clearly obtained via the standard photolithography process of FPI-7 with the molar ratio of 50% for MABTFMB in the diamine moiety.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Applied Sciences Vol. 12, No. 7 ( 2022-03-23), p. 3282-
    In: Applied Sciences, MDPI AG, Vol. 12, No. 7 ( 2022-03-23), p. 3282-
    Abstract: Silicon (Si) is the second most abundant element after oxygen in the earth’s crust and soil. It is available for plant growth and development, and it is considered as quasi-essential for plant growth. The uptake and transport of Si is mediated by Si transporters. With the study of the molecular mechanism of Si uptake and transport in higher plants, different proteins and coding genes with different characteristics have been identified in numerous plants. Therefore, the accumulation, uptake and transport mechanisms of Si in various plants appear to be quite different. Many studies have reported that Si is beneficial for plant survival when challenged by disease, and it can also enhance plant resistance to pathogens, even at low Si accumulation levels. In this review, we discuss the distribution of Si in plants, as well as Si uptake, transport and accumulation, with a focus on recent advances in the study of Si transporters in different plants and the beneficial roles of Si in disease resistance. Finally, the application prospects are reviewed, leading to an exploration of the benefits of Si uptake for plant resistance against pathogens.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Plants, MDPI AG, Vol. 11, No. 19 ( 2022-09-21), p. 2465-
    Abstract: Anoectochilus roxburghii (Wall.) Lindl has been used in Chinese herbal medicine for treating various ailments. However, its wild resources are endangered, and artificial cultivation of the plant is limited by the low regeneration rate of conventional propagation methods. The lack of A. roxburghii resources is detrimental to the commercial production of the plant and kinsenoside, which is unique to Anoectochilus species. To develop highly efficient methods for A. roxburghii micropropagation and find alternative resources for kinsenoside production, we created an induction, proliferation, and regeneration of PLBs (IPR-PLB) protocol for A. roxburghii. We also analyzed the kinsenoside and flavonoid contents during the induction and proliferation of PLBs. The best media of IPR-PLB for PLB induction and proliferation (secondary PLB induction and proliferation), shoot formation, and rooting medium were Murashige and Skoog (MS) + 3 mg/L 6-benzylaminopurine (6-BA) + 0.5 mg/L naphthaleneacetic acid (NAA) + 0.8 mg/L zeatin (ZT) + 0.2 mg/L 2,4-dichlorophenoxyacetic acid (2, 4-D), MS + 3 mg/L 6-BA + 0.5 mg/L NAA, and MS + 0.5 mg/L NAA, respectively. On these optimized media, the PLB induction rate was 89 ± 2.08%, secondary PLB induction rate was 120 ± 5%, secondary PLB proliferation rate was 400 ± 10% and 350 ± 10 % in terms of the quantity and biomass at approximately 1 month, shoot induction rate was 10.5 shoots/PLB mass, and root induction rate was 98%. All plantlets survived after acclimation. Darkness or weak light were essential for PLB proliferation, and light was crucial for PLB differentiation on these optimized media. The kinsenoside contents of PLBs and secondary PLBs were 10.38 ± 0.08 and 12.30 ± 0.08 mg/g fresh weight (FW), respectively. Moreover, the peak kinsenoside content during the proliferation of secondary PLBs was 34.27 ± 0.79 mg/g FW, which was slightly lower than that of the whole plant (38.68 ± 3.12 mg/g FW). Two flavonoids exhibited tissue- or temporal-specific accumulation patterns, and astragalin accumulated exclusively during the first 2 weeks of cultivation. The IPR-PLB protocol for A. roxburghii may facilitate the efficient micropropagation of A. roxburghii plants. Furthermore, the PLBs are a good alternative resource for kinsenoside production.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Horticulturae Vol. 8, No. 10 ( 2022-09-22), p. 865-
    In: Horticulturae, MDPI AG, Vol. 8, No. 10 ( 2022-09-22), p. 865-
    Abstract: Plant organ abscission is a common phenomenon that occurs at a specific position called the abscission zone (AZ). The differentiation and development of the pedicel AZ play important roles in flower and fruit abscission, which are of great significance for abscission in tomatoes before harvest. Previous studies have reported some genes involved in AZ differentiation; however, the genes regulating pedicel AZ cell development in tomatoes after AZ differentiation remain poorly understood. In this study, transcriptome analyses of tomato pedicel AZ samples were performed at 0, 5, 15, and 30 days post-anthesis (DPA). Pedicel AZ growth was mainly observed before 15 DPA. A principal component analysis and a correlation analysis were carried out in order to compare the repeatability and reliability for different samples. We observed 38 up-regulated and 31 down-regulated genes that were significantly altered during 0 to 5 DPA, 5 to 15 DPA, and 0 to 15 DPA, which may play key roles in AZ cell enlargement. GO and KEGG enrichment analyses of the selected DEGs under all three different comparisons were conducted. Auxin-signaling-related genes were analyzed, as well as AUX/IAA, GH3, and small auxin up-regulated RNA (SAUR) gene expression patterns. The presented results provide information on pedicel AZ development, which might help in regulating flower or fruit pedicel abscission in tomato production facilities.
    Type of Medium: Online Resource
    ISSN: 2311-7524
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2813983-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2012
    In:  International Journal of Molecular Sciences Vol. 13, No. 5 ( 2012-05-15), p. 5832-5843
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 13, No. 5 ( 2012-05-15), p. 5832-5843
    Abstract: CYP83A1 and CYP83B1 are two key synthesis genes in the glucosinolate biosynthesis pathway. CYP83A1 mainly metabolizes the aliphatic oximes to form aliphatic glucosinolate and CYP83B1 mostly catalyzes aromatic oximes to synthesis corresponding substrates for aromatic and indolic glucosinolates. In this study, two CYP83A1 genes named BcCYP83A1-1 (JQ289997), BcCYP83A1-2 (JQ289996) respectively and one CYP83B1 (BcCYP83B1, HM347235) gene were cloned from the leaves of pak choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S.H. Lee) Hanelt) “Hangzhou You Dong Er” cultivar. Their ORFs were 1506, 1509 and 1500 bp in length, encoding 501, 502 and 499 amino acids, respectively. The predicted amino acid sequences of CYP83A1-1, CYP83A1-2 and CYP83B1 shared high sequence identity of 87.65, 86.48 and 95.59% to the corresponding ones in Arabidopsis, and 98.80, 98.61 and 98.80% to the corresponding ones in Brassica pekinensis (Chinese cabbage), respectively. Quantitative real-time PCR analysis indicated that both CYP83A1 and CYP83B1 expressed in roots, leaves and petioles of pak choi, while the transcript abundances of CYP83A1 were higher in leaves than in petioles and roots, whereas CYP83B1 showed higher abundances in roots. The expression levels of glucosinolate biosynthetic genes were consistent with the glucosinolate profile accumulation in shoots of seven cultivars and three organs. The isolation and characterization of the glucosinolate synthesis genes in pak choi would promote the way for further development of agronomic traits via genetic engineering.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2012
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Applied Sciences, MDPI AG, Vol. 12, No. 14 ( 2022-07-16), p. 7180-
    Abstract: Cucumber (Cucumis sativus L.), belonging to the gourd family (Cucurbitaceae), is one of the major vegetable crops in China. Conventional genetic breeding methods are ineffective for improving the tolerance of cucumber to various environmental stresses, diseases, and pests in the short term, but bio-engineering technologies can be applied to cucumber breeding to produce new cultivars with high yield and quality. Regeneration and genetic transformation systems are key technologies in modern cucumber breeding. Compared with regeneration systems, genetic transformation systems are not yet fully effective, and the low efficiency of genetic transformation is a bottleneck in cucumber cultivation. Here, we systematically review the key factors influencing the regeneration and genetic transformation of cucumber plants, including the selection of genotype, source of explants and forms of exogenous hormones added to the medium, the methods of transgene introduction and co-cultivation, and selection methods. In addition, we also focus on recent advances in the study of molecular mechanisms underlying important agronomic traits using genetic transformation technology, such as fruit length, fruit warts, and floral development. This review provides reference information for future research on improvements in cucumber varieties.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2018
    In:  International Journal of Molecular Sciences Vol. 19, No. 8 ( 2018-08-04), p. 2290-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 19, No. 8 ( 2018-08-04), p. 2290-
    Abstract: Polygalacturonase (PG), a large hydrolase family in plants, is involved in pectin disassembly of the cell wall in plants. The present study aims to characterize PG genes and investigate their expression patterns in Solanum lycopersicum. We identified 54 PG genes in the tomato genome and compared their amino acid sequences with their Arabidopsis counterpart. Subsequently, we renamed these PG genes according to their Arabidopsis homologs. Phylogenetic and evolutionary analysis revealed that these tomato PG genes could be classified into seven clades, and within each clade the exon/intron structures were conserved. Expression profiles analysis through quantitive real-time polymerase chain reaction (qRT-PCR) revealed that most SlPGs had specific or high expression patterns in at least one organ, and particularly five PG genes (SlPG14, SlPG15, SlPG49, SlPG70, and SlPG71) associated with fruit development. Promoter analysis showed that more than three cis-elements associated with plant hormone response, environmental stress response or specific organ/tissue development exhibited in each SlPG promoter regions. In conclusion, our results may provide new insights for the further study of PG gene function during plant development.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...