GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Animals, MDPI AG, Vol. 13, No. 17 ( 2023-08-26), p. 2717-
    Abstract: Acute hypoxia is a common abiotic stress in commercial aquaculture and has significant effects on fish physiology and metabolism. Due to its large size and rapid growth, the greater amberjack (Seriola dumerili) is an economically important fish with high farming value. This species is intolerant to hypoxia, which makes it susceptible to mass mortality and hinders the progress of amberjack cultivation. Based on a comparative analysis of the liver transcriptome between acute hypoxia-tolerant (HT) and -intolerant (HS) groups, this study first explored the molecular mechanisms of acute hypoxia in greater amberjack. By simulating the acute hypoxic environment and using RNA sequencing (RNA-Seq), the differences in liver transcriptional changes between the acute hypoxia-tolerant (HT) and hypoxia-intolerant (HS) groups of greater amberjack were probed. Based on differential expression analysis, 829 differentially expressed genes (DEGs) were screened in both groups. Relative to the HS group, 374 DEGs were upregulated and 455 were downregulated in the HT group. Compared with the HS group, genes such as slc2a5 and prkaa2 related to promoting sugar transport and inhibiting lipid syntheses were upregulated, while genes that inhibit gluconeogenesis and promote lipid syntheses, such as pgp and aacs, were downregulated. The expression of odc1 was significantly and relatively downregulated in the HT group, which would lead to the inhibition of intracellular antioxidant activity and decreased scavenging of ROS. The NF-kB pathway was also promoted to some extent in individuals in the HT group relative to the HS group to resist apoptosis. In addition, the relative downregulation of apoptosis and autophagy-related genes, such as endog, hm13, and casp6, was also detected in the HT group. The present findings first reported the regulation mechanism by which liver tissue coped with the acute hypoxia stress in greater amberjack, which will provide important technical support for preventing acute hypoxia-induced death in advance and reducing economic losses.
    Type of Medium: Online Resource
    ISSN: 2076-2615
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2606558-7
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancers, MDPI AG, Vol. 14, No. 20 ( 2022-10-12), p. 4997-
    Abstract: The histone H3 lysine 36 (H3K36) methyltransferase NSD3, a neighboring gene of FGFR1, has been identified as a critical genetic driver of lung squamous cell carcinoma (LUSC). However, the molecular characteristics, especially the immunological roles of NSD3 in driving carcinogenesis, are poorly understood. In this study, we systematically integrated multi-omics data (e.g., genome, transcriptome, proteome, and TMA array) to dissect the immunological profiles in NSD3-amplified LUSC. Next, pharmaco-transcriptomic correlation analysis was implemented to identify the molecular underpinnings and therapeutic vulnerabilities in LUSC. We revealed that NSD3-amplified LUSC presents a non-inflamed tumor immune microenvironment (TIME) state in multiple independent LUSC patient cohorts. Predictably, elevated NSD3 expression was correlated with a worse immunotherapy outcome. Further molecular characterizations revealed that the high activity of unfolded protein response (UPR) signaling might be a pivotal mediator for the non-immunogenic phenotype of NSD3-amplified LUSC. Concordantly, we showed that NSD3-amplified LUSCs exhibited a more sensitive phenotype to compounds targeting UPR branches than the wild-type group. In brief, our multi-level analyses point to a previously unappreciated immunological role for NSD3 and provide therapeutic rationales for NSD3-amplified squamous lung cancer.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Agronomy, MDPI AG, Vol. 10, No. 10 ( 2020-09-23), p. 1452-
    Abstract: Bacterial community and soil enzymatic activity depend on soil and management conditions. Fertilization is an important approach to maintain and enhance enzyme activities and microbial community diversity. Although the effects of fertilizer application on soil microbial community and related parameters are explored, the effects on the soil microbiome associated with those of wheat plant organs, including those associated with roots and spikelets, are not well-known. Therefore, in this study, by using a sequencing approach, we assessed the effects of inorganic fertilizers, manure, and biochar on soil enzyme activities, bacterial community diversity and structure in the bulk soil, rhizosphere, roots, and spikelet of wheat (Triticumaestivum L.). For this, different treatment biochar (BC), manure (OM), low mineral fertilizer (HL), high mineral fertilizer (HF), and no fertilizer (FO) were used for the enzyme activities and bacterial community structure diversity tested. The result showed that organic amendment application increased total nitrogen, soil available phosphorus, and potassium compared to inorganic fertilizer and control, especially in the rhizosphere. Enzyme activities were generally higher in the rhizosphere than in the bulk soil and organic amendments increased activities of acid phosphatase (AcP), β-1,4-N-acetyl-glucosaminidase (NAG), and phenol oxydase (PhOx). Compared with soil and rhizosphere, bacterial diversity was lower in wheat roots and evenlower in the spikelet. From the bulk soil, rhizosphere to roots, the fertilization regimes maintained bacterial diversity, while organic amendment increased bacterial diversity in the spikelet. Fertilization regimes significantly influenced the relative abundances of 74 genera across 12 phyla in the four compartments. Interestingly, the relative abundance of Proteobacteria (Citrobacter, Pantoea, Pseudomonas, and unclassified Enterobacteriaceae) in the spikelet was decreased by increasing inorganic fertilizer and further by manure and biochar, whereas those of Actinobacteria (Microbacterium and an unclassified Microbacteriaceae) and Bacteroidetes (Hymenobacter and Chitinophagaceae) were increased. The results suggest that potential bacterial functions of both roots and above-ground parts of wheat would be changed by different organic amendment regimes (manure and biochar).
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...