GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (1)
Material
Publisher
  • MDPI AG  (1)
Language
Years
  • 1
    In: Biomolecules, MDPI AG, Vol. 10, No. 3 ( 2020-03-21), p. 482-
    Abstract: Accompanied with an increase of revealed biomolecular structures owing to advancements in structural biology, the molecular dynamics (MD) approach, especially coarse-grained (CG) MD suitable for macromolecules, is becoming increasingly important for elucidating their dynamics and behavior. In fact, CG-MD simulation has succeeded in qualitatively reproducing numerous biological processes for various biomolecules such as conformational changes and protein folding with reasonable calculation costs. However, CG-MD simulations strongly depend on various parameters, and selecting an appropriate parameter set is necessary to reproduce a particular biological process. Because exhaustive examination of all candidate parameters is inefficient, it is important to identify successful parameters. Furthermore, the successful region, in which the desired process is reproducible, is essential for describing the detailed mechanics of functional processes and environmental sensitivity and robustness. We propose an efficient search method for identifying the successful region by using two machine learning techniques, Bayesian optimization and active learning. We evaluated its performance using F1-ATPase, a biological rotary motor, with CG-MD simulations. We successfully identified the successful region with lower computational costs (12.3% in the best case) without sacrificing accuracy compared to exhaustive search. This method can accelerate not only parameter search but also biological discussion of the detailed mechanics of functional processes and environmental sensitivity based on MD simulation studies.
    Type of Medium: Online Resource
    ISSN: 2218-273X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2701262-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...