GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (4)
  • 1
    In: Sensors, MDPI AG, Vol. 22, No. 10 ( 2022-05-17), p. 3804-
    Abstract: Blood viscosity measurements are crucial for the diagnosis of cardiovascular and hematological diseases. Traditional blood viscosity measurements have obvious limitations because of their expensive equipment usage and large sample consumption. In this study, blood viscosity was measured by the oscillating circuit method and impedance analysis method based on single QCM. In addition, the effectiveness of two methods with high precision and less sample is proved by the experiments. Moreover, compared to the result from a standard rotational viscometer, the maximum relative errors of the proposed oscillating circuit method and impedance analysis method are ±5.2% and ±1.8%, respectively. A reliability test is performed by repeated measurement (N = 5), and the result shows that the standard deviation about 0.9% of impedance analysis is smaller than that of oscillating circuit method. Therefore, the impedance analysis method is superior. Further, the repeatability of impedance analysis method was evaluated by regression analysis method, and the correlation coefficient R2 〉 0.965 demonstrated that it had excellent reproducibility.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 16, No. 9 ( 2024-04-29), p. 1579-
    Abstract: Obtaining accurate and real-time spatial distribution information regarding crops is critical for enabling effective smart agricultural management. In this study, innovative decision fusion strategies, including Enhanced Overall Accuracy Index (E-OAI) voting and the Overall Accuracy Index-based Majority Voting (OAI-MV), were introduced to optimize the use of diverse remote sensing data and various classifiers, thereby improving the accuracy of crop/vegetation identification. These strategies were utilized to integrate crop/vegetation classification outcomes from distinct feature sets (including Gaofen-6 reflectance, Sentinel-2 time series of vegetation indices, Sentinel-2 time series of biophysical variables, Sentinel-1 time series of backscatter coefficients, and their combinations) using distinct classifiers (Random Forests (RFs), Support Vector Machines (SVMs), Maximum Likelihood (ML), and U-Net), taking two grain-producing areas (Site #1 and Site #2) in Haixi Prefecture, Qinghai Province, China, as the research area. The results indicate that employing U-Net on feature-combined sets yielded the highest overall accuracy (OA) of 81.23% and 91.49% for Site #1 and Site #2, respectively, in the single classifier experiments. The E-OAI strategy, compared to the original OAI strategy, boosted the OA by 0.17% to 6.28%. Furthermore, the OAI-MV strategy achieved the highest OA of 86.02% and 95.67% for the respective study sites. This study highlights the distinct strengths of various remote sensing features and classifiers in discerning different crop and vegetation types. Additionally, the proposed OAI-MV and E-OAI strategies effectively harness the benefits of diverse classifiers and multisource remote sensing features, significantly enhancing the accuracy of crop/vegetation classification.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Marine Drugs, MDPI AG, Vol. 15, No. 8 ( 2017-08-02), p. 244-
    Abstract: Two new alkaloids, strepchazolins A (1) and B (2), together with a previously reported compound, streptazolin (3), were isolated from a marine actinomycete, Streptomyces chartreusis NA02069, collected in the Coast of Hainan Island, China. The structures of new compounds were determined by extensive NMR, mass spectroscopic and X-ray crystallographic analysis, as well as modified Mosher’s method. Compound 1 showed weak anti-Bacillus subtilis activity with the MIC value of 64.0 μM, and weak inhibitory activity against acetylcholinesterase (AChE) in vitro with IC50 value of 50.6 μM, while its diastereoisomer, Compound 2, is almost inactive.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Sensors, MDPI AG, Vol. 18, No. 9 ( 2018-08-31), p. 2890-
    Abstract: The paper presents an intelligent real-time slope surface deformation monitoring system based on binocular stereo-vision. To adapt the system to field slope monitoring, a design scheme of concentric marking point is proposed. Techniques including Zernike moment edge extraction, the least squares method, and k-means clustering are used to design a sub-pixel precision localization method for marker images. This study is mostly focused on the tracking accuracy of objects in multi-frame images obtained from a binocular camera. For this purpose, the Upsampled Cross Correlation (UCC) sub-pixel template matching technique is employed to improve the spatial-temporal contextual (STC) target-tracking algorithm. As a result, the tracking accuracy is improved to the sub-pixel level while keeping the STC tracking algorithm at high speed. The performance of the proposed vision monitoring system has been well verified through laboratory tests.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...