GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Agronomy, MDPI AG, Vol. 11, No. 3 ( 2021-02-24), p. 406-
    Abstract: Zinc finger homeodomain (ZF-HD) transcription factors play significant roles in plant growth and responses to environmental stresses. In this study, 32 ZF-HD genes identified in the tobacco (Nicotiana tabacum L.) genome were divided into six groups according to phylogenetic analysis with Arabidopsis and tomato ZF-HD members. An examination of gene structures and conserved motifs revealed the relatively conserved exon/intron structures and motif organization within each subgroup. In addition, various stress-related elements are found in the promoter region of these genes. The expression profiling analysis revealed that NtZF-HD genes expressed in different tissues and could be induced by several abiotic stresses. Notably, NtZF-HD21 was highly expressed in response to the drought treatments. Subcellular localization analysis and a virus-induced gene silencing (VIGS) experiment were performed to investigate the potential functions of NtZF-HD21. The subcellular localization indicated that NtZF-HD21 is a nuclear protein. Furthermore, gene silencing of the NtZF-HD21 gene reduced the drought resistance of tobacco. These findings provide insights for further biological functional analyses of the NtZF-HD genes in tobacco.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genes, MDPI AG, Vol. 10, No. 2 ( 2019-02-20), p. 164-
    Abstract: Members of the plant-specific B3 transcription factor superfamily play important roles in various growth and developmental processes in plants. Even though there are many valuable studies on B3 genes in other species, little is known about the B3 superfamily in tobacco. We identified 114 B3 proteins from tobacco using comparative genome analysis. These proteins were classified into four subfamilies based on their phylogenetic relationships, and include the ARF, RAV, LAV, and REM subfamilies. The chromosomal locations, gene structures, conserved protein motifs, and sub-cellular localizations of the tobacco B3 proteins were analyzed. The patterns of exon-intron numbers and arrangement and the protein structures of the tobacco B3 proteins were in general agreement with their phylogenetic relationships. The expression patterns of 114 B3 genes revealed that many B3 genes show tissue-specific expression. The expression levels of B3 genes in axillary buds after topping showed that the REM genes are mainly up-regulated in response to topping, while the ARF genes are down-regulated after topping.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nanomaterials, MDPI AG, Vol. 12, No. 15 ( 2022-08-08), p. 2721-
    Abstract: Carbon aerogel (CA) based materials have multiple advantages, including high porosity, tunable molecular structures, and environmental compatibility. Increasing interest, which has focused on CAs as electrocatalysts for sustainable applications including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and CO2 reduction reaction (CO2RR) has recently been raised. However, a systematic review covering the most recent progress to boost CA-based electrocatalysts for ORR/OER/HER/CO2RR is now absent. To eliminate the gap, this critical review provides a timely and comprehensive summarization of the applications, synthesis methods, and principles. Furthermore, prospects for emerging synthesis, screening, and construction methods are outlined.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Materials, MDPI AG, Vol. 15, No. 22 ( 2022-11-18), p. 8219-
    Abstract: A Ni25—10% SiC—X% graphene (mass fraction X = 0, 0.5, 1.0, 1.5) composite cladding layer was prepared on a 6063 aluminum alloy substrate using laser cladding in order to enhance the comprehensive performance of the aircraft refueling interface. The effect of the graphene content on the organization and properties of nickel-based silicon carbide composite cladding layers was investigated by laser melting. The macroscopic morphology, microstructure, hardness, elemental changes, corrosion and wear resistance of the cladding layer were studied by optical microscopy, scanning electron microscopy, a hardness tester, an X-ray diffractometer, an electrochemical workstation and an M-2000 frictional wear tester. The results indicated that the nickel-based clad layer without graphene incorporation had the worst forming, with a large number of pores and cracks in the cladding layer. Because graphene agglomerated easily, cracks were regenerated when the content of graphene was higher than 0.5%. The material phases of the cladding layer without graphene incorporation were mainly: Al3Ni2, Fe3Si and SiC. Due to the addition of graphene, the clad layer of specimen 2 was refined and a large number of hard phases, such as CrC and Cr23C6, were generated, which led to the increase in the hardness of the clad layer. When the content of graphene was further increased, the number of hard phases such as CrC and Cr23C6 produced in the cladding was relatively reduced due to the agglomeration of graphene, and the hardness of the cladding was reduced. As the impermeability of graphene reduces the diffusion of corrosive media to the substrate, the generation of hard-phase Al3Ni2 in the cladding layer makes the corrosion resistance of the cladding layer increase with the increase in graphene mass fraction. The result is that, when the content of graphene was 0.5%, the overall performance of the clad layer was the best, where its average hardness was increased by 40%, the average coefficient of friction was reduced by 12.7% and the wear rate was reduced by 60%.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Molecular Sciences Vol. 22, No. 5 ( 2021-03-04), p. 2568-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 5 ( 2021-03-04), p. 2568-
    Abstract: The NAC (NAM, ATAF1/2, and CUC2) transcription factors comprise one of the largest transcription factor families in plants and play important roles in stress responses. However, little is known about the functions of potato NAC family members. Here we report the cloning of a potato NAC transcription factor gene StNAC053, which was significantly upregulated after salt, drought, and abscisic acid treatments. Furthermore, the StNAC053-GFP fusion protein was found to be located in the nucleus and had a C-terminal transactivation domain, implying that StNAC053 may function as a transcriptional activator in potato. Notably, Arabidopsis plants overexpressing StNAC053 displayed lower seed germination rates compared to wild-type under exogenous ABA treatment. In addition, the StNAC053 overexpression Arabidopsis lines displayed significantly increased tolerance to salt and drought stress treatments. Moreover, the StNAC053-OE lines were found to have higher activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) under multiple stress treatments. Interestingly, the expression levels of several stress-related genes including COR15A,DREB1A, ERD11, RAB18, ERF5, and KAT2, were significantly upregulated in these StNAC053-overexpressing lines. Taken together, overexpression of the stress-inducible StNAC053 gene could enhance the tolerances to both salt and drought stress treatments in Arabidopsis, likely by upregulating stress-related genes.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Remote Sensing, MDPI AG, Vol. 14, No. 5 ( 2022-02-23), p. 1081-
    Abstract: In radio occultation (RO) data processing and data assimilation, the forward model (FM) is used to calculate bending angle (BA) from refractivity (N). The accuracy and precision of forward modeled BA are affected by refractivity profiles and FM methods, including Abel integral algorithms (direct, exp, exp_T, linear) and methods of interpolating refractivity during integral (log-cubic spline and log-linear). Experiment 1 compares these forward model methods by comparing the difference and relative difference (RD) of the experimental value (forward modeled ECMWF analysis) and the true value (BA of FY3D RO data). Results suggested that the exp with log-cubic spline (log-cubic) interpolation is the most accurate FM because it has better integral accuracy (less than 2%) to inputs, especially when the input is lower than an order of magnitude of 1 × 10−2 (that is, above 60 km). By contrast, the direct induced a 10% error, and the improvement of exp T to exp is limited. Experiment 2 simulated the exact errors of an FM (exp) based on inputs on different vertical resolutions. The inputs are refractivity profiles on model levels of three widely used analyses, including ECMWF 4Dvar analysis, final operational global analysis data (FNL), and ERA5. Results demonstrated that based on exp and log-cubic interpolation, BA on model level of ECMWF 4Dvar has the highest accuracy, whose RD is 0.5% between 0–35 km, 4% between 35–58 km, and 1.8% between 58–80 km. By contrast, the other two analyses have low accuracy. This paper paves the way to better understanding the FM, and simulation errors on model levels of three analyses can be a helpful FM error reference.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Molecules Vol. 28, No. 5 ( 2023-02-27), p. 2206-
    In: Molecules, MDPI AG, Vol. 28, No. 5 ( 2023-02-27), p. 2206-
    Abstract: In this work, we achieved a C3-selenylation of pyrido[1,2-a]pyrimidin-4-ones using an electrochemically driven external oxidant-free strategy. Various structurally diverse seleno-substituted N-heterocycles were obtained in moderate to excellent yields. Through radical trapping experiments, GC-MS analysis and cyclic voltammetry study, a plausible mechanism for this selenylation was proposed.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Agronomy, MDPI AG, Vol. 12, No. 11 ( 2022-10-24), p. 2609-
    Abstract: Aerobic irrigation can effectively improve the oxygen environment in the root zone, and enhance crop quality and yield. However, how aerobic irrigation regulates root growth has not been elucidated. In this study, tomato plants were irrigated with three levels of oxygen (high, medium, and low) under underground drip irrigation. The morphology, activity, transcriptome, and hormone content of tomato roots under oxygen irrigation were analyzed. We found that the aeration irrigation significantly promoted root development. Notably, in the high-aeration irrigation treatment (HAI), the total root length, total surface area, total volume, and root activity were 12.41%, 43.2%, 79.1%, and 24.15% higher than in the non-aeration irrigation treatment (CK), respectively. The transcriptome of tomato roots under aeration irrigation was determined with a total of 272 differentially expressed genes (DEGs), including 131 up-regulated and 141 down-regulated genes. The Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed that the DEGs were enriched mainly in the metabolic pathways and plant hormone signal transduction. Among the plant hormone signal transduction, 50% of DEGs belonged to IAA signal-related genes and were upregulated. LC-MS analysis showed that the content of auxin hormones in the tomato roots subjected to aeration irrigation was significantly higher than that in CK. The content of Indole-3-acetic acid (IAA), Indole-3-carboxylic acid (ICA) and Indole-3-carboxaldehyde (ICAld) were 2.3, 2.14 and 1.45 times higher than those of the CK, but insignificant effects were exerted on the contents of cytokinins, salicylic acid, jasmonic acid, abscisic acid, and ethylene. Meanwhile, the key enzyme of auxin synthesis flavin monooxygenase (YUCCA) was significantly up-regulated. The aforementioned results show that aeration irrigation may promote the growth and development of roots by auxin regulation.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmosphere, MDPI AG, Vol. 11, No. 11 ( 2020-11-06), p. 1204-
    Abstract: The global navigation satellite system (GNSS) radio occultation (RO) technique is an atmospheric sounding technique that originated in the 1990s. The data provided by this approach are playing a consistently significant role in atmospheric research and related applications. This paper mainly summarizes the applications of RO to numerical weather prediction (NWP) generally and specifically for tropical cyclone (TC) forecast and outlines the prospects of the RO technique. With advantages such as high precision and accuracy, high vertical resolution, full-time and all-weather, and global coverage, RO data have made a remarkable contribution to NWP and TC forecasts. While accounting for only 7% of the total observations in European Centre for Medium-Range Weather Forecasts’ (ECMWF’s) assimilation system, RO has the fourth-largest impact on NWP. The greater the amount of RO data, the better the forecast of NWP. In cases of TC forecasts, assimilating RO data from heights below 6 km and from the upper troposphere and lower stratosphere (UTLS) region contributes to the forecasting accuracy of the track and intensity of TCs in different stages. A statistical analysis showed that assimilating RO data can help restore the critical characteristics of TCs, such as the location and intensity of the eye, eyewall, and rain bands. Moreover, a non-local excess phase assimilation operator can be employed to optimize the assimilation results. With denser RO profiles expected in the future, the accuracy of TC forecast can be further improved. Finally, future trends in RO are discussed, including advanced features, such as polarimetric RO, and RO strategies to increase the number of soundings, such as the use of a cube satellite constellation.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Coatings Vol. 11, No. 10 ( 2021-10-13), p. 1241-
    In: Coatings, MDPI AG, Vol. 11, No. 10 ( 2021-10-13), p. 1241-
    Abstract: To further improve the hardness of the laser cladding layer on the surface of the vermicular graphite cast iron, the structural parameters of the laser cladding Co-base were designed and optimized, and the properties of the clad layer were evaluated using optical microscopy (OM), scanning electron microscopy (SEM), energy spectroscopy (EDS), X-ray diffractometer (XRD), electrochemical workstation, and friction wear equipment. The results show that the average hardness of the molten layer of Ni and Co-based composite cladding layer is 504 HV0.5, which is 0.64 times that of the Co-based cladding layer due to the combined factors of Ni-Cr-Fe equivalent to the dilution of the Ni-based cladding layer to the Co-based cladding layer. Due to the potential difference of the Ni, Cr, and Co elements on the surface of the cladding layer, the self-corrosion potential of the Ni and Co-based composite cladding layer is 1.08 times that of the Co-based cladding layer, and the self-corrosion current density is 0.51 times. Laser cladding Co-based cladding layer has high corrosion resistance. Under the influence of plastic deformation and oxidative wear of the cladding layer of the Ni and Co-based composite cladding layer, the wear amount of the cladding layer of the Ni and Co-based composite cladding layer is less.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662314-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...