GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Microorganisms, MDPI AG, Vol. 11, No. 10 ( 2023-10-01), p. 2475-
    Abstract: The Tibetan Plateau, known as the “Roof of the World” and “The Third Pole”, harbors numerous saline lakes primarily distributed in the Northern Tibetan Plateau. However, the challenging conditions of high altitude, low oxygen level, and harsh climate have limited investigations into the actinobacteria from these saline lakes. This study focuses on investigating the biodiversity and bioactive secondary metabolites of cultivable actinobacteria isolated from the sediments of four saline lakes on the Northern Tibetan Plateau. A total of 255 actinobacterial strains affiliated with 21 genera in 12 families of 7 orders were recovered by using the pure culture technique and 16S rRNA gene phylogenetic analysis. To facilitate a high-throughput bioactivity evaluation, 192 isolates underwent OSMAC cultivation in a miniaturized 24-well microbioreactor system (MATRIX cultivation). The antibacterial activity of crude extracts was then evaluated in a 96-well plate antibacterial assay. Forty-six strains demonstrated antagonistic effects against at least one tested pathogen, and their underlying antibacterial mechanisms were further investigated through a dual-fluorescent reporter assay (pDualrep2). Two Streptomyces strains (378 and 549) that produce compounds triggering DNA damage were prioritized for subsequent chemical investigations. Metabolomics profiling involving HPLC-UV/vis, UPLC-QTOF-MS/MS, and molecular networking identified three types of bioactive metabolites belonging to the aromatic polyketide family, i.e., cosmomycin, kidamycin, and hedamycin. In-depth analysis of the metabolomic data unveiled some potentially novel anthracycline compounds. A genome mining study based on the whole-genome sequences of strains 378 and 549 identified gene clusters potentially responsible for cosmomycin and kidamycin biosynthesis. This work highlights the effectiveness of combining metabolomic and genomic approaches to rapidly identify bioactive chemicals within microbial extracts. The saline lakes on the Northern Tibetan Plateau present prospective sources for discovering novel actinobacteria and biologically active compounds.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nanomaterials, MDPI AG, Vol. 12, No. 12 ( 2022-06-17), p. 2089-
    Abstract: In this paper, the novel morphology of cellulose nanofibers (CNFs) with a unique tree-branched structure was discovered by using acid hydrolysis assisted with pre-disintegration treatment from wood pulps. For comparison, the pulps derived from both softwood and hardwood were utilized to extract nanocellulose in order to validate the feasibility of proposed material fabrication technique. The morphology, crystalline structures, chemical structures, and thermal stability of nanocellulose were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetric analysis (TGA). Prior to acid hydrolysis, softwood and hardwood pulps underwent the disintegration treatment in the fiber dissociator. It has been found that nanocellulose derived from disintegrated pulps possesses much longer fiber length (approximately 5–6 μm) and more evident tree-branched structures along with lower degree of crystallinity when compared with those untreated counterparts. The maximum mass loss rate of CNFs takes place at the temperature level of approximately 225 °C, and appears to be higher than that of cellulose nanowhiskers (CNWs), which might be attributed to an induced impact of amorphous content. On the other hand, disintegration treatment is quite beneficial to the enhancement of tensile strength of nanocellulose films. This study elaborates a new route of material fabrication toward the development of well-tailored tree-branched CNFs in order to broaden the potential widespread applications of nanocellulose with diverse morphological structures.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Minerals, MDPI AG, Vol. 10, No. 6 ( 2020-05-30), p. 499-
    Abstract: Three batches of Mg2SiO4-ringwoodites (Mg-Rw) with different water contents (CH2O = ~1019(238), 5500(229) and 16,307(1219) ppm) were synthesized by using conventional high-P experimental techniques. Thirteen thin sections with different thicknesses (~14–113 μm) were prepared from them and examined for water-related IR peaks using unpolarized infrared spectra at ambient P-T conditions, leading to the observation of 15 IR peaks at ~3682, 3407, 3348, 3278, 3100, 2849, 2660, 2556, 2448, 1352, 1347, 1307, 1282, 1194 and 1186 cm−1. These IR peaks suggest multiple types of hydrogen defects in hydrous Mg-Rw. We have attributed the IR peaks at ~3680, 3650–3000 and 3000–2000 cm−1, respectively, to the hydrogen defects [VSi(OH)4], [VMg(OH)2MgSiSiMg] and [VMg(OH)2]. Combining these IR features with the chemical characteristics of hydrous Rw, we have revealed that the hydrogen defects [VMg(OH)2MgSiSiMg] are dominant in hydrous Rw at high P-T conditions, and the defects [VSi(OH)4] and [VMg(OH)2] play negligible roles. Extensive IR measurements were performed on seven thin sections annealed for several times at T of 200–600 °C and quickly quenched to room T. They display many significant variations, including an absorption enhancement of the peak at ~3680 cm−1, two new peaks occurring at ~3510 and 3461 cm−1, remarkable intensifications of the peaks at ~3405 and 3345 cm−1 and significant absorption reductions of the peaks at ~2500 cm−1. These phenomena imply significant hydrogen migration among different crystallographic sites and rearrangement of the O-H dipoles in hydrous Mg-Rw at high T. From the IR spectra obtained for hydrous Rw both unannealed and annealed at high T, we further infer that substantial amounts of cation disorder should be present in hydrous Rw at the P-T conditions of the mantle transition zone, as required by the formation of the hydrogen defects [VMg(OH)2MgSiSiMg]. The Mg-Si disorder may have very large effects on the physical and chemical properties of Rw, as exampled by its disproportional effects on the unit-cell volume and thermal expansivity.
    Type of Medium: Online Resource
    ISSN: 2075-163X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2655947-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...