GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Animals, MDPI AG, Vol. 10, No. 12 ( 2020-12-08), p. 2332-
    Abstract: The dairy industry plays an important role in the economy and food security of India. A study of the dairy value chains was conducted in Punjab, India, to identify production constraints and biosecurity risks. Focus group discussions and key informant interviews were conducted during 2018–2019 with a total of 119 participants comprising veterinarians (41), paraveterinarians (15), veterinary academics (12), dairy farmers (46) and key informants (5). Input and output value chains were created, and potential risk nodes were identified that could facilitate the transmission of pathogens between animals, farms and villages. The majority of the participants were male (93%), middle-aged (68%) or worked in rural areas (75%). Most of the farmers self-cultivated their green fodder (82%), used the wheat straw from their own fields (60%) but purchased commercial feed (63%). Artificial insemination was used by 85% of farmers for cattle, but only 68% for buffaloes. Most of the farmers (76%) reported getting their animals vaccinated against foot-and-mouth disease and hemorrhagic septicemia. Animals were sold and purchased without any health certification and testing in most cases. Adoption of biosecurity measures by farmers and the use of personal protective equipment by veterinary personnel were very low. We recommend conducting epidemiological studies to further characterize the identified risk nodes, training of veterinary practitioners and farmers to ensure adequate biosecurity practices and the appropriate use of personal protective equipment.
    Type of Medium: Online Resource
    ISSN: 2076-2615
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2606558-7
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Micromachines, MDPI AG, Vol. 13, No. 7 ( 2022-06-25), p. 999-
    Abstract: The optoelectronic advantages of anchoring plasmonic silver and copper particles and non-plasmonic titanium particles onto zinc oxide (ZnO) nanoflower (NF) scaffolds for the fabrication of perovskite solar cells (PSCs) are addressed in this article. The metallic particles were sputter-deposited as a function of sputtering time to vary their size on solution-grown ZnO NFs on which methylammonium lead iodide perovskite was crystallized in a controlled environment. Optical absorption measurements showed impressive improvements in the light-harvesting efficiency (LHE) of the devices using silver nanoparticles and some concentrations of copper, whereas the LHE was relatively lower in devices used titanium than in a control device without any metallic particles. Fully functional PSCs were fabricated using the plasmonic and non-plasmonic metallic film-decorated ZnO NFs. Several fold enhancements in photoconversion efficiency were achieved in the silver-containing devices compared with the control device, which was accompanied by an increase in the photocurrent density, photovoltage, and fill factor. To understand the plasmonic effects in the photoanode, the LHE, photo-current density, photovoltage, photoluminescence, incident photon-to-current conversion efficiency, and electrochemical impedance properties were thoroughly investigated. This research showcases the efficacy of the addition of plasmonic particles onto photo anodes, which leads to improved light scattering, better charge separation, and reduced electron–hole recombination rate.
    Type of Medium: Online Resource
    ISSN: 2072-666X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2620864-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Sustainability, MDPI AG, Vol. 14, No. 6 ( 2022-03-21), p. 3701-
    Abstract: Citizen-led mitigation and adaptation are key to climate policy advancement and acceleration, particularly within an urban development context. The top-down approach requires the development of clear action plans for the involvement and engagement of citizens to accelerate bottom-up climate mitigation and adaptation efforts within the urban context. In Malaysia, there are national policy strategies such as the 12th Malaysia Plan, the National Urban Wellbeing Blueprint, the National Climate Change Policy, and the Malaysian New Urban Agenda. However, a successful implementation of climate policies can only be achieved when citizens are adequately socialized to policy impacts. This paper explores citizen perceptions and attitudes toward participation in mitigation and adaptation efforts for climate action within an urban context. Underpinned by the Theory of Planned Behavior and the Transtheoretical Theory, this study explored the approach of citizen participation as a possible tool for assessing climate policy effectiveness for bottom-up climate mitigation and adaptation efforts within an urban context. The study was set within the Malaysian urban context, given the limited empirical evidence in the area. The findings of the study suggest that a bottom-up approach to citizen participation through education, awareness, and inclusive climate policy formulation procedures will result in positive attitudes toward citizen participation.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Photochem, MDPI AG, Vol. 1, No. 3 ( 2021-12-08), p. 523-536
    Abstract: The effect of foam-like 3D graphene (3DG) in an electron transport material (ETM), viz. ZnO thin film, on the steady-state photoluminescence (PL), light-harvesting efficiency (LHE), photocurrent density (JSC), photovoltage (VOC), and charge transport parameters of perovskite solar cells (PSCs) are systematically investigated. The ETM is developed by spin coating a ZnO precursor solution containing varying amounts of 3DG on conducting glass substrates and appropriate annealing. A significant improvement in the photoconversion efficiency of PSCs is observed for a low concentration of 3DG in ZnO. The current–voltage and electrochemical impedance spectroscopy measurements show that the addition of 3DG enhances the VOC due to efficient electron–hole separation and charge transport compared to the pristine ZnO. These studies offer a route for further advances in enhancing the optoelectronic properties of ETM for artificial photosynthesis and photocatalysis devices.
    Type of Medium: Online Resource
    ISSN: 2673-7256
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Energies, MDPI AG, Vol. 16, No. 8 ( 2023-04-12), p. 3391-
    Abstract: This research work aims to develop a fault detection and performance monitoring system for a photovoltaic (PV) system that can detect and communicate errors to the user. The proposed system uses real-time data from various sensors to identify performance problems and faults in the PV system, particularly for encapsulation failure and module corrosion. The system incorporates a user interface that operates on a micro-computer utilizing Python software to show the detected errors from the PV miniature scale system. Fault detection is achieved by comparing the One-diode model with a controlled state retrieved through field testing. A database is generated by the system based on acceptable training data and it serves as a reference point for detecting faults. The user is notified of any deviations based on the threshold value from the training data as an indication of an error by the system. The system offers real-time monitoring, easy-to-understand error messages, and remote access capability, making it an efficient and effective tool for both users and maintenance personnel to manage and maintain the PV system.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Aerospace Vol. 9, No. 12 ( 2022-11-29), p. 769-
    In: Aerospace, MDPI AG, Vol. 9, No. 12 ( 2022-11-29), p. 769-
    Abstract: The excessive depletion of fossil fuels and increasing environmental concerns have led to the need to explore alternative sources of power for aircraft. This has spurred various stakeholders in the aerospace industry to explore hybrid electric propulsion technology and fully electric vehicles. Airships are aerial platforms based on lighter-than-air systems technology. They have several unique features compared to other vehicles, chiefly their being more environmentally friendly due to low fuel consumption. Among airships, lifting-body dynastats are the most suitable configuration for implementing different levels of hybridization in propulsion systems owing to their large surface-to-volume ratio. The present study deals with the relevance of a hybrid propulsion (conventional engine + electric motor) system and its comparison to conventional ones. An objective function based on envelope volume is formulated to achieve an optimal configuration of a tri-lobed dynastat to carry 10 tons of payload over a 500 km range for specified operating conditions powered by conventional fuel and batteries. The design space is explored assuming a predicted future battery technology level with specific energies ranging from 250 to 750 Wh/kg. Three case studies based on the source of power are investigated: fuel alone, fuel + batteries, and fuel + batteries + solar array. It is seen that the airship can be fully electric with zero carbon emissions but at the expense of a longer length (+18%) and higher envelope volume (+63%) compared to the baseline model.
    Type of Medium: Online Resource
    ISSN: 2226-4310
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2756091-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Biomimetics, MDPI AG, Vol. 7, No. 3 ( 2022-08-29), p. 123-
    Abstract: This paper aims to understand the aerodynamic performance of a bio-inspired flapping-wing model using the dwarf Kingfisher wing as the bionic reference. The paper demonstrates the numerical investigation of the Kingfisher-inspired flapping-wing followed by experimental validation to comprehend the results fully and examine the aerodynamic characteristics at a flight velocity of 4.4 m/s, with wingbeat frequencies of 11 Hz, 16 Hz, and 21 Hz, at various angles of rotation ranging from 0° to 20° for each stroke cycle. The motivation to study the performance at low speed is based on lift generation as a challenge at low speed as per quasi-steady theory. The temporal evolution of the mean force coefficients has been plotted for various angles of rotation. The results show amplification of the maximum value for the cycle average lift and drag coefficient as the rotation angle increases. The history of vertical force and the flow patterns around the wing is captured in a full cycle with asymmetric lift development in a single stroke cycle. It is observed from the results that the downstroke generates more lift force in magnitude compared to the upstroke. In addition to the rotation angle, lift asymmetry is also affected by wing–wake interaction. Experimental results reveal that there is a stable leading-edge vortex developed in the downstroke, which sheds during the upstroke. An optimum lift and thrust flapping flight can be achieved, with a lift coefficient of 3.45 at 12°. The experimental and parametric study results also reveal the importance of passive rotation in wings for aerodynamic performance and wing flexibility as an important factor for lift generation.
    Type of Medium: Online Resource
    ISSN: 2313-7673
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2856245-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Micromachines, MDPI AG, Vol. 12, No. 5 ( 2021-05-02), p. 511-
    Abstract: In terms of their flight and unusual aerodynamic characteristics, mosquitoes have become a new insect of interest. Despite transmitting the most significant infectious diseases globally, mosquitoes are still among the great flyers. Depending on their size, they typically beat at a high flapping frequency in the range of 600 to 800 Hz. Flapping also lets them conceal their presence, flirt, and help them remain aloft. Their long, slender wings navigate between the most anterior and posterior wing positions through a stroke amplitude about 40 to 45°, way different from their natural counterparts ( 〉 120°). Most insects use leading-edge vortex for lift, but mosquitoes have additional aerodynamic characteristics: rotational drag, wake capture reinforcement of the trailing-edge vortex, and added mass effect. A comprehensive look at the use of these three mechanisms needs to be undertaken—the pros and cons of high-frequency, low-stroke angles, operating far beyond the normal kinematic boundary compared to other insects, and the impact on the design improvements of miniature drones and for flight in low-density atmospheres such as Mars. This paper systematically reviews these unique unsteady aerodynamic characteristics of mosquito flight, responding to the potential questions from some of these discoveries as per the existing literature. This paper also reviews state-of-the-art insect-inspired robots that are close in design to mosquitoes. The findings suggest that mosquito-based small robots can be an excellent choice for flight in a low-density environment such as Mars.
    Type of Medium: Online Resource
    ISSN: 2072-666X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2620864-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Veterinary Sciences Vol. 9, No. 2 ( 2022-02-10), p. 75-
    In: Veterinary Sciences, MDPI AG, Vol. 9, No. 2 ( 2022-02-10), p. 75-
    Abstract: The overpopulation of stray dogs is a serious public health and animal welfare concern in India. Neglected zoonotic diseases such as rabies and echinococcosis are transmitted at the stray–dog human interface, particularly in low to middle-income countries. The current study was designed to estimate the stray dog populations in Punjab to enhance the implementation of animal birth and disease (for example, rabies vaccination) control programs. This is the first systematic estimation of the stray dog population using a recommended method (mark–re-sight) in Punjab, India. The study was conducted from August 2016 to November 2017 in selected villages or wards in Punjab. For the rural areas, 22 sub-districts in each district were randomly selected, then one village from each of the 22 selected sub-districts was selected (by convenience sampling). For urban areas, 3 towns (less than 100,000 human population) and 2 large cities (more than or equal to 100,000 human population) were randomly selected, followed by convenience selection of two wards from each of the 5 selected towns/cities. To estimate the dog population size, we used a modified mark–re-sight procedure and analysed counts using two methods; the Lincoln–Petersen formula with Chapman’s correction, and an application of Good–Turing theory (SuperDuplicates method; estimated per km2 and per 1000 adult humans and were compared between localities (villages vs. towns), dog sex (male vs. female) and age group (young vs. adult) using linear mixed models with district as a random effect. The predicted mean (95% CI) count of the dogs per village or ward were extrapolated to estimate the number of stray dogs in Punjab based on (a) the number of villages and wards in the state; (b) the adult human population of the state and (c) the built-up area of the state. Median stray dog populations per village and per ward using the Lincoln–Petersen formula with Chapman’s correction were estimated to be 33 and 65 dogs, respectively. Higher estimates of 61 per village and 112 per ward are reported using the SuperDuplicates method. The number of males was significantly higher than the number of females and the number of adult dogs was about three times the number of young dogs. Based on different methods, estimates of the mean stray dog population in the state of Punjab ranged from 519,000 to 1,569,000. The current study revealed that there are a substantial number of stray dogs and a high number reside in rural (versus urban) areas in Punjab. The estimated stray dog numbers pose a potential public health hazard in Punjab. This impact requires assessment. The estimated stray dog numbers will help develop a dog population and rabies control program in which information about the logistics required as well as costs of implementing such programmes in Punjab can be incorporated.
    Type of Medium: Online Resource
    ISSN: 2306-7381
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2768971-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Polymers, MDPI AG, Vol. 14, No. 11 ( 2022-05-31), p. 2252-
    Abstract: Despite the growing popularity of rice husk ash (RHA) in various applications, limited research has been devoted to identify the influence of silica content in RHA on the intumescent properties. The present work aims to introduce a novel and economical geopolymer hybrid fire retardant coating by utilizing the use of RHA. The silica from Rice husk (RH) was extracted using distilled water and hydrochloric acid as leaching agents and subjected to pyrolysis treatment. X-ray fluorescence (XRF) analysis indicated that RH that underwent HCl pre-treatment at 600 °C for one hour produced a high purity amorphous silica content of 93.92%. XRD measurements revealed that HCl pretreatment increased the crystallization temperature of RHA to 1000 °C and retained the amorphous state of silica for 2 h. In a fire resistance test, temperature at the equilibrium and time taken to reach 200 °C for sample S3 (93.92% wt. silica) showed 5.83% and 3.48% improvement compared to sample S1 (87.49% wt. silica). The microstructure analysis showed that sample S1 possessed bigger pores on the coating surface while an increment in silica content in sample S3 produced a dense foam structure. Results from a fire resistance test were supported by the Energy dispersive X-ray (EDX) analysis of the sample. The oxygen-to-carbon ratio of S1 and S3 coating samples were 1.695 and 1.622 respectively, which indicated that lower oxygen–to-carbon ratio in sample S3 coating resulted in better anti-oxidant properties. Interestingly, the increment of SiO2 content in RHA efficiently improved the compactness of the char layer, which resulted in a relatively higher fire-retardant efficiency. RHA proved to be a promising environmentally friendly strategy to replace halogenated fire retardant materials.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...