GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (6)
  • 1
    In: Materials, MDPI AG, Vol. 13, No. 21 ( 2020-11-04), p. 4957-
    Abstract: The Mg–0.6Al–20.8Gd (wt.%) alloys were homogenized at 620 °C for 20 min under 0 T and 1 T, followed by furnace cooling, quenching, and air cooling, respectively. The effects of the magnetic field on the phase constituent, microstructure, secondary phase precipitation, and mechanical properties of the Mg–Al–Gd alloys were investigated. The Mg–Al–Gd alloys contained α-Mg, Mg5Gd, Al2Gd, and GdH2 phases, and the phase constituents were hardly influenced by the applied magnetic field. However, the precipitation of the paramagnetic Mg5Gd upon cooling was accelerated by the magnetic field, and that of the ferromagnetic Al2Gd phases was inhibited. In addition, the Al2Gd phase was significantly refined and driven to segregate at the grain boundaries by the magnetic field, and the resultant pinning effect led to the microstructure change from dendritic α-Mg grains to rosette-like ones. When the magnetic field was only applied to the homogenization stage, the content of the Mg5Gd phase remained unchanged in the quenched alloy, whereas the Mg5Gd laths were significantly refined. By contrast, the contents of the Al2Gd and GdH2 phases were increased, while the precipitation sites were still within the α-Mg grains. The Mg5Gd laths were incapable of providing precipitation strengthening, while the Al2Gd and GdH2 particles brought positive effects on the enhancement of the mechanical properties. In the quenching condition, the hardness, compression strength, and ductility can be improved by the magnetic treatment, whereas these mechanical properties can be suppressed in the furnace cooled condition by the magnetic treatment.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Metals Vol. 9, No. 6 ( 2019-06-03), p. 646-
    In: Metals, MDPI AG, Vol. 9, No. 6 ( 2019-06-03), p. 646-
    Abstract: Due to its negligible solubility, it is difficult to obtain a W-30Cu composite with a homogenous microstructure. However, with a selected W skeleton, a homogeneous phase distribution was achieved for a W-30Cu composite in the present study. By detailed characterization of the mechanical performance and microstructure of the W-30Cu composite, as well as the stress distribution state under a loading condition, the effects of microstructure homogeneity on the mechanical properties and failure mechanisms are identified. The mechanisms by which the ductility and strength depend on microstructure homogeneity contain the effects on plastic deformation and stress coordination of the Cu phase network. The dominant factors for the high ductility and strength of W-30Cu composites are proposed.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662252-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Land, MDPI AG, Vol. 11, No. 8 ( 2022-08-12), p. 1303-
    Abstract: The ecological environment is important for the survival and development of human beings, and objective and accurate monitoring of changes in the ecological environment has received extensive attention. Based on the normalized difference vegetation index (NDVI), wetness (WET), normalized differential build-up and bare soil index (NDBSI), and land surface temperature (LST), the principal component analysis method is used to construct a comprehensive index to evaluate the ecological environment’s quality. The R package “Relainpo” is used to estimate the relative importance and contribution rate of NDVI, WET, NDBSI, and LST to the remote sensing ecological index (RSEI). The optimal parameter geographic detector (OPGD) model is used to quantitatively analyze the influencing factors, degree of influence, and interaction of the RSEI. The results show that from 2001 to 2020, the area with a poor grade quality of the RSEI in Guangzhou decreased from 719.2413 km2 to 660.4146 km2, while the area with an excellent quality grade of the RSEI increased from 1778.8311 km2 to 1978.9390 km2. The NDVI (40%) and WET (35%) contributed significantly to the RSEI, while LST and NDBSI contributed less to the RSEI. The results of single factor analysis revealed that soil type have the greatest impact on the RSEI with a coefficient (Q) of 0.1360, followed by a temperature with a coefficient (Q) of 0.1341. The interaction effect of two factors is greater than that of a single factor on the RSEI, and the interaction effect of different factors on the RSEI is significant, but the degree of influence is not consistent. This research may provide new clues for the stabilization and improvement of ecological environmental quality.
    Type of Medium: Online Resource
    ISSN: 2073-445X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2682955-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Materials, MDPI AG, Vol. 14, No. 10 ( 2021-05-14), p. 2550-
    Abstract: By evenly mixing polytetrafluoroethylene-silicon energetic materials (PTFE-Si EMs) with tin oxide (SnO2) particles, we demonstrate a direct synthesis of graphene-encapsulated SnO2 (Gr-SnO2) nanoparticles through the self-propagated exothermic reaction of the EMs. The highly exothermic reaction of the PTFE-Si EMs released a huge amount of heat that induced an instantaneous temperature rise at the reaction zone, and the rapid expansion of the gaseous SiF4 product provided a high-speed gas flow for dispersing the molten particles into finer nanoscale particles. Furthermore, the reaction of the PTFE-NPs with Si resulted in a simultaneous synthesis of graphene that encapsulated the SnO2 nanoparticles in order to form the core-shell nanostructure. As sodium storage material, the graphene-encapsulated SnO2 nanoparticles exhibit a good cycling performance, superior rate capability, and a high initial Coulombic efficiency of 85.3%. This proves the effectiveness of our approach for the scalable synthesis of core-shell-structured graphene-encapsulated nanomaterials.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Buildings, MDPI AG, Vol. 12, No. 5 ( 2022-04-20), p. 514-
    Abstract: Using the coda wave interferometry (CWI) method to obtain the ultrasonic coda wave characteristics of loaded concrete is an important method to evaluate the mechanical response of concrete. In this paper, the ultrasonic coda wave characteristics of C40–C70 concrete specimens (four strengths of concrete) under uniaxial compression were tested by laboratory experiments. Furthermore, to clarify the relationship between the internal damage process of concrete and the change rate of coda wave velocity, an ultrasonic coda wave discrete element simulation model combined with digital image processing technology was established. The results show that the coda wave is very sensitive to small changes in the compressive damage to concrete, and the change in coda wave velocity can correspond to the development process of concrete damage. This research is conducive to a better understanding of the complex material behavior of compressive concrete and proves the feasibility of ultrasonic field simulation and processing by using numerical simulation images of concrete damage.
    Type of Medium: Online Resource
    ISSN: 2075-5309
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661539-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Sustainability Vol. 13, No. 14 ( 2021-07-12), p. 7773-
    In: Sustainability, MDPI AG, Vol. 13, No. 14 ( 2021-07-12), p. 7773-
    Abstract: The Sichuan province is a key area for forest and grassland fire prevention in China. Forest resources contribute significantly not only to the biological gene pool in the mid latitudes but also in reducing the concentration of greenhouse gases and slowing down global warming. To study and forecast forest fire change trends in a grade I forest fire danger zone in the Sichuan province under climate change, the dynamic impacts of meteorological factors on forest fires in different climatic regions were explored and a model between them was established by using an integral regression in this study. The results showed that the dominant factor behind the area burned was wind speed in three climatic regions, particularly in Ganzi and A’ba with plateau climates. In Ganzi and A’ba, precipitation was mainly responsible for controlling the number of forest fires while it was mainly affected by temperature in Panzhihua and Liangshan with semi-humid subtropical mountain climates. Moreover, the synergistic effect of temperature, precipitation and wind speed was responsible in basin mid-subtropical humid climates with Chengdu as the center and the influence of temperature was slightly higher. The differential forest fire response to meteorological factors was observed in different climatic regions but there was some regularity. The influence of monthly precipitation in the autumn on the area burned in each climatic region was more significant than in other seasons, which verified the hypothesis of a precipitation lag effect. Climate warming and the combined impact of warming effects may lead to more frequent and severe fires.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...