GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
Material
Publisher
  • MDPI AG  (2)
Language
Years
  • 1
    In: Materials, MDPI AG, Vol. 16, No. 13 ( 2023-07-02), p. 4784-
    Abstract: To improve the heat resistance of titanium alloys, the effects of Y content on the precipitation behavior, oxidation resistance and high-temperature mechanical properties of as-cast Ti-5Al-2.75Sn-3Zr-1.5Mo-0.45Si-1W-2Nb-xY (x = 0.1, 0.2, 0.4) alloys were systematically investigated. The microstructures, phase evolution and oxidation scales were characterized by XRD, Laser Raman, XPS, SEM and TEM. The properties were studied by cyclic oxidation as well as room- and high-temperature tensile testing. The results show that the microstructures of the alloys are of the widmanstätten structure with typical basket weave features, and the prior β grain size and α lamellar spacing are refined with the increase of Y content. The precipitates in the alloys mainly include Y2O3 and (TiZr)6Si3 silicide phases. The Y2O3 phase has specific orientation relationships with the α-Ti phase: (002)Y2O3 // (1¯1¯20)α-Ti, [110]Y2O3 // [4¯401] α-Ti. (TiZr)6Si3 has an orientation relationship with the β-Ti phase: (022¯1¯)(TiZr)6Si3 // (011)β-Ti, [1¯21¯6](TiZr)6Si3 // [044¯] β-Ti. The 0.1 wt.% Y composition alloy has the best high-temperature oxidation resistance at different temperatures. The oxidation behaviors of the alloys follow the linear-parabolic law, and the oxidation products of the alloys are composed of rutile-TiO2, anatase-TiO2, Y2O3 and Al2O3. The room-temperature and 700 °C UTS of the alloys decreases first and then increases with the increase of Y content; the 0.1 wt.% Y composition alloy has the best room-temperature mechanical properties with a UTS of 1012 MPa and elongation of 1.0%. The 700 °C UTS and elongation of the alloy with 0.1 wt.% Y is 694 MPa and 9.8%, showing an optimal comprehensive performance. The UTS and elongation of the alloys at 750 °C increase first and then decrease with the increase of Y content. The optimal UTS and elongation of the alloy is 556 MPa and 10.1% obtained in 0.2 wt.% Y composition alloy. The cleavage and dimples fractures are the primary fracture mode for the room- and high-temperature tensile fracture, respectively.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Photonics, MDPI AG, Vol. 10, No. 6 ( 2023-06-20), p. 702-
    Abstract: In this study, we employed the fs time-resolved shadowgraphy method to investigate the impact of the first pump pulse (DP1) on the transient temporal and spatial evolution of electron plasma induced by femtosecond (fs) laser double pulses (DPs) in fused silica. It was observed that the DP1-induced phase transition acted as a waveguide, confining the propagation of the second pump pulse (DP2) light inside the material and resulting in a decrease in the diameter of the DP2-induced electron plasma region. Moreover, the DP2-induced maximum peak electron density was higher than that induced by a single pulse (SP) at the same pulse energy, which may be explained by the DP1-induced highly absorbing semi-metallic state of warm dense glass in fused silica. Importantly, as the energy of DP1 increased, the mean diameter of the DP2-induced electron plasma region further decreased, and the maximum peak electron density increased. Compared with SPs, DPs more easily produced damage in fused silica. In addition, the mean diameter of the DP2-induced electron plasma region and the maximum peak electron density remained almost unchanged when the pulses’ time separation (ts) was changed from 1 to 50 ps, mainly due to the long relaxation time of the phase transition caused by DP1.
    Type of Medium: Online Resource
    ISSN: 2304-6732
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2770002-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...