GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Horticulturae, MDPI AG, Vol. 8, No. 8 ( 2022-08-01), p. 692-
    Abstract: Plant growth in a controlled environment system is highly dependent on the availability of light. The light-emitting diode (LED) is capable of providing the needed quality and quantity of light for the plant. The purpose of this study was to determine the effect of white LED light intensity on the growth of in vitro propagated apple (M-9) seedlings in a controlled environment system. Seedlings were grown for 30 days under five different white LED light intensities: 100–500 (L1), 250–500 (L2), 500–500 (L3), 250–250 (L4), and 100–100 (L5). Our findings indicate that seedlings treated with L3 grew substantially taller than seedlings treated with L1, L2, or L5. The number of leaves, stem diameter, shoot fresh weight, root fresh weight, and shoot dry weight of L3 treated seedlings were considerably greater than those growing in other treatments. Furthermore, root length, root dry weight, chlorophyll content, and photosynthesis rate were considerably increased in the L3 treatment group compared to the L5 treatment group. However, there was no significant difference in the stomatal conductance or transpiration rate of apple seedlings between the light treatments. Moreover, a positive correlation was seen between stomatal conductance and transpiration rate. These results suggest that light intensity PPFD 500-500 were favorable for the initial growth of in vitro propagated apple seedlings.
    Type of Medium: Online Resource
    ISSN: 2311-7524
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2813983-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Agronomy, MDPI AG, Vol. 11, No. 12 ( 2021-11-30), p. 2450-
    Abstract: Substrate composition and container size are considered crucial for apple rootstock grown in a plug seedling system. This study investigated the effect of substrate material’s proportion and different container volumes on the growth of apple rootstock (M-9) plants propagated by tissue culture. In substrate composition, three different ratios of peat moss (PM): vermiculite (VL): perlite (PL) at 1:1:1 (S1), 1:2:3 (S2), 3:1:2 (S3) were used. For container size, plants were grown in 1000 mL (C1), 500 mL (C2), and 300 mL (C3) containers filled by 1:1:1 mixture of PM, VL and PL. In both cases, plants were treated eleven weeks in a green house. Our results demonstrate that the plant height, number of leaves, leaf area, shoot fresh weight and root fresh weight of apple rootstock were significantly higher in substrate composition S3 compared with S1 composition. However, chlorophyll content (SPAD) and photosynthesis rate were unaffected by variation of substrate composition. Furthermore, rootstock grown in C1 container showed plant height, number of leaves, leaf area, number of nodes, root length, shoot and root’s fresh and dry weight were significantly higher than those grown in C2 and C3 volume containers. The chlorophyll content and transpiration rate were not significantly affected by the different container volumes. These results suggest that the substrate ratio 3:1:2 of PM:VL:PL and container size 1000 mL were more favorable than other treatments for initial growth and development of the tissue culture propagated apple rootstock plants.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Agriculture, MDPI AG, Vol. 12, No. 9 ( 2022-09-06), p. 1405-
    Abstract: The aim of this study was to investigate the effect of shade screens on the physiological activity, growth parameters and fruit characteristics of the paprika (Capsicum annuum L.) plant. Plants were grown in a protected greenhouse and treated under two different shade screens, S1 (single screen) and S2 (double screens; 10% low light intensity compared to S1), during summer at a particular time of the day. The results revealed that the plant height was significantly enlarged by the S2 treatment. However, the number of leaves, leaf fresh weight and leaf dry weight were significantly decreased under S2-treated plants compared to those grown in the S1 treatment. The stem diameter and shoot fresh weight were not significantly different between the treatments. The sap flow and normalized difference vegetation index (NDVI) were higher in S1-treated plants than in those grown in the S2 treatment. The chlorophyll fluorescence fluctuated in both treatments. The fruit fresh weight, number of fruits, fruit pericarp thickness, fruit firmness, fruit volume, sugar content and acidity were significantly higher in S1-treated plants than in S2. Hunter values a and b were significantly higher in S2-treated plants. Moreover, the fruit length and width were not significantly different between the two treatments. The sugar content and acidity of paprika showed a positive correlation. These results suggest that, compared to a double screen for shade in the greenhouse, a single screen is suitable for the growth of paprika plants and enhanced their fruit production.
    Type of Medium: Online Resource
    ISSN: 2077-0472
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2651678-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...