GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 20, No. 10 ( 2019-05-24), p. 2552-
    Abstract: The presence of B-cell clusters in allogenic T cell-mediated rejection (TCMR) of kidney allografts is linked to more severe disease entities. In this study we characterized B-cell infiltrates in patients with TCMR and examined the role of serum CXCL-13 in these patients and experimentally. CXCL-13 serum levels were analyzed in 73 kidney allograft recipients at the time of allograft biopsy. In addition, four patients were evaluated for CXCL13 levels during the first week after transplantation. ELISA was done to measure CXCL-13 serum levels. For further mechanistic understanding, a translational allogenic kidney transplant (ktx) mouse model for TCMR was studied in BalbC recipients of fully mismatched transplants with C57BL/6 donor kidneys. CXCL-13 serum levels were measured longitudinally, CD20 and CD3 composition and CXCL13 mRNA in tissue were examined by flow cytometry and kidneys were examined by histology and immunohistochemistry. We found significantly higher serum levels of the B-cell chemoattractant CXCL13 in patients with TCMR compared to controls and patients with borderline TCMR. Moreover, in patients with acute rejection within the first week after ktx, a 〉 5-fold CXCL13 increase was measured and correlated with B-cell infiltrates in the biopsies. In line with the clinical findings, TCMR in mice correlated with increased systemic serum-CXCL13 levels. Moreover, renal allografts had significantly higher CXCL13 mRNA expression than isogenic controls and showed interstitial CD20+ B-cell clusters and CD3+ cell infiltrates accumulating in the vicinity of renal vessels. CXCL13 blood levels correlate with B-cell involvement in TCMR and might help to identify patients at risk of a more severe clinical course of rejection.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Medicine, MDPI AG, Vol. 10, No. 12 ( 2021-06-19), p. 2715-
    Abstract: Background: ANCA-associated vasculitis (AAV) is a rare small vessel disease characterized by multi-organ involvement. Biomarkers that can measure specific organ involvement are missing. Here, we ask whether certain circulating cytokines and chemokines correlate with renal involvement and if distinct cytokine/chemokine patterns can differentiate between renal, ear/nose/throat, joints, and lung involvement of AAV. Methods: Thirty-two sets of Birmingham vasculitis activity score (BVAS), PR3-ANCA titers, laboratory marker, and different cytokines were obtained from 17 different patients with AAV. BVAS, PR3-ANCA titers, laboratory marker, and cytokine concentrations were correlated to different organ involvements in active AAV. Results: Among patients with active PR3-AAV (BVAS 〉 0) and kidney involvement we found significant higher concentrations of chemokine ligand (CCL)-1, interleukin (IL)-6, IL21, IL23, IL-28A, IL33, monocyte chemoattractant protein 2 (MCP2), stem cell factor (SCF), thymic stromal lymphopoietin (TSLP), and thrombopoietin (TPO) compared to patients without PR3-ANCA-associated glomerulonephritis. Patients with ear, nose, and throat involvement expressed higher concentrations of MCP2 and of the (C-X-C motif) ligand-12 (CXCL-12) compared to patients with active AAV and no involvement of these organs. Conclusion: We identified distinct cytokine patterns for renal manifestation and for ear, nose and throat involvement of PR3-AAV. Distinct plasma cytokines might be used as non-invasive biomarkers of organ involvement in AAV.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 17, No. 23 ( 2020-12-07), p. 9144-
    Abstract: Guidelines recommend a healthy lifestyle and regularly physical activity (PA) after kidney transplantation (KTx). The KTx360° program is a multicenter, multisectoral, multimodal, telemedicine-based follow-up care program. Effects of the first COVID-19 wave restrictions on health-related quality of life and PA of supervised KTx360° patients were evaluated using an online questionnaire. Six hundred and fifty-two KTx360° patients were contacted via email and were asked to complete the Freiburg questionnaire of physical activity and the Short form 12 Health Survey (SF-12) online. Pre-pandemic and lockdown data were compared in 248 data sets. While sporting activity decreased during the COVID-19 pandemic, basic and leisure activity increased, resulting in increased overall activity. The physical component scale of the SF-12 was in the low normal range before as well as during the pandemic, with a small but significant increase during the pandemic. The mental component scale showed normal values before and during pandemic with a small but statistically significant decrease. Our study supports the effectiveness of a telemedicine based program for KTx patient care in maintaining PA and quality of life during the first peak of the COVID-19 pandemic. However, further research and observation during the ongoing pandemic are required.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Applied Sciences Vol. 9, No. 11 ( 2019-05-30), p. 2238-
    In: Applied Sciences, MDPI AG, Vol. 9, No. 11 ( 2019-05-30), p. 2238-
    Abstract: Perceiving its environment in 3D is an important ability for a modern robot. Today, this is often done using LiDARs which come with a strongly limited field of view (FOV), however. To extend their FOV, the sensors are mounted on driving vehicles in several different ways. This allows 3D perception even with 2D LiDARs if a corresponding localization system or technique is available. Another popular way to gain most information of the scanners is to mount them on a rotating carrier platform. In this way, their measurements in different directions can be collected and transformed into a common frame, in order to achieve a nearly full spherical perception. However, this is only possible if the kinetic chains of the platforms are known exactly, that is, if the LiDAR pose w.r.t. to its rotation center is well known. The manual measurement of these chains is often very cumbersome or sometimes even impossible to do with the necessary precision. Our paper proposes a method to calibrate the extrinsic LiDAR parameters by decoupling the rotation from the full six degrees of freedom transform and optimizing both separately. Thus, one error measure for the orientation and one for the translation with known orientation are minimized subsequently with a combination of a consecutive grid search and a gradient descent. Both error measures are inferred from spherical calibration targets. Our experiments with the method suggest that the main influences on the calibration results come from the the distance to the calibration targets, the accuracy of their center point estimation and the search grid resolution. However, our proposed calibration method improves the extrinsic parameters even with unfavourable configurations and from inaccurate initial pose guesses.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 23 ( 2022-12-01), p. 15070-
    Abstract: Deciphering the pathophysiological mechanisms of primary podocytopathies that can lead to end-stage renal disease and increased mortality is an unmet need. Studying how microRNAs (miRs) interfere with various signaling pathways enables identification of pathomechanisms, novel biomarkers and potential therapeutic options. We investigated the expression of miR-200c in urine from patients with different renal diseases as a potential candidate involved in podocytopathies. The role of miR-200c for the glomerulus and its potential targets were studied in cultured human podocytes, human glomerular endothelial cells and in the zebrafish model. miR-200c was upregulated in urine from patients with minimal change disease, membranous glomerulonephritis and focal segmental glomerulosclerosis and also in transforming growth factor beta (TGF-β) stressed glomerular endothelial cells, but not in podocytes. In zebrafish, miR-200c overexpression caused proteinuria, edema, podocyte foot process effacement and glomerular endotheliosis. Although zinc finger E-Box binding homeobox 1/2 (ZEB1/2), important in epithelial to mesenchymal transition (EMT), are prominent targets of miR-200c, their downregulation did not explain our zebrafish phenotype. We detected decreased vegfaa/bb in zebrafish overexpressing miR-200c and could further prove that miR-200c decreased VEGF-A expression and secretion in cultured human podocytes. We hypothesize that miR-200c is released from glomerular endothelial cells during cell stress and acts in a paracrine, autocrine, as well as context-dependent manner in the glomerulus. MiR-200c can cause glomerular damage most likely due to the reduction of podocyte VEGF-A. In contrast, miR-200c might also influence ZEB expression and therefore EMT, which might be important in other conditions. Therefore, we propose that miR-200c-mediated effects in the glomerulus are context-sensitive.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cells, MDPI AG, Vol. 11, No. 1 ( 2022-01-03), p. 149-
    Abstract: Nephronectin (NPNT) is an extracellular matrix protein in the glomerular basement membrane that is produced by podocytes and is important for the integrity of the glomerular filtration barrier. Upregulated transforming growth factor β (TGF-β) and altered NPNT are seen in different glomerular diseases. TGF-β downregulates NPNT and upregulates NPNT-targeting microRNAs (miRs). However, the pathways involved were previously unknown. By using selective inhibitors of the canonical, SMAD-dependent, and non-canonical TGF-β pathways, we investigated NPNT transcription, translation, secretion, and regulation through miRs in podocytes. TGF-β decreased NPNT mRNA and protein in cultured human podocytes. TGF-β-dependent regulation of NPNT was meditated through intracellular signaling pathways. Under baseline conditions, non-canonical pathways predominantly regulated NPNT post-transcriptionally. Podocyte NPNT secretion, however, was not dependent on canonical or non-canonical TGF-β pathways. The canonical TGF-β pathway was also dispensable for NPNT regulation after TGF-β stimulation, as TGF-β was still able to downregulate NPNT in the presence of SMAD inhibitors. In contrast, in the presence of different non-canonical pathway inhibitors, TGF-β stimulation did not further decrease NPNT expression. Moreover, distinct non-canonical TGF-β pathways mediated TGF-β-induced upregulation of NPNT-targeting miR-378a-3p. Thus, we conclude that post-transcriptional fine-tuning of NPNT expression in podocytes is mediated predominantly through non-canonical TGF-β pathways.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 12 ( 2023-06-20), p. 10384-
    Abstract: Signaling-pathway analyses and the investigation of gene responses to different stimuli are usually performed in 2D monocultures. However, within the glomerulus, cells grow in 3D and are involved in direct and paracrine interactions with different glomerular cell types. Thus, the results from 2D monoculture experiments must be taken with caution. We cultured glomerular endothelial cells, podocytes and mesangial cells in 2D/3D monocultures and 2D/3D co-cultures and analyzed cell survival, self-assembly, gene expression, cell–cell interaction, and gene pathways using live/dead assay, time-lapse analysis, bulk-RNA sequencing, qPCR, and immunofluorescence staining. Without any need for scaffolds, 3D glomerular co-cultures self-organized into spheroids. Podocyte- and glomerular endothelial cell-specific markers and the extracellular matrix were increased in 3D co-cultures compared to 2D co-cultures. Housekeeping genes must be chosen wisely, as many genes used for the normalization of gene expression were themselves affected in 3D culture conditions. The transport of podocyte-derived VEGFA to glomerular endothelial cells confirmed intercellular crosstalk in the 3D co-culture models. The enhanced expression of genes important for glomerular function in 3D, compared to 2D, questions the reliability of currently used 2D monocultures. Hence, glomerular 3D co-cultures might be more suitable in the study of intercellular communication, disease modelling and drug screening ex vivo.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cells, MDPI AG, Vol. 12, No. 9 ( 2023-04-25), p. 1245-
    Abstract: Podocytes are critical components of the glomerular filtration barrier, sitting on the outside of the glomerular basement membrane. Primary and secondary foot processes are characteristic for podocytes, but cell processes that develop in culture were not studied much in the past. Moreover, protocols for diverse visualization methods mostly can only be used for one technique, due to differences in fixation, drying and handling. However, we detected by single-cell RNA sequencing (scRNAseq) analysis that cells reveal high variability in genes involved in cell type-specific morphology, even within one cell culture dish, highlighting the need for a compatible protocol that allows measuring the same cell with different methods. Here, we developed a new serial and correlative approach by using a combination of a wide variety of microscopic and spectroscopic techniques in the same cell for a better understanding of podocyte morphology. In detail, the protocol allowed for the sequential analysis of identical cells with light microscopy (LM), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Skipping the fixation and drying process, the protocol was also compatible with scanning ion-conductance microscopy (SICM), allowing the determination of podocyte surface topography of nanometer-range in living cells. With the help of nanoGPS Oxyo®, tracking concordant regions of interest of untreated podocytes and podocytes stressed with TGF-β were analyzed with LM, SEM, Raman spectroscopy, AFM and SICM, and revealed significant morphological alterations, including retraction of podocyte process, changes in cell surface morphology and loss of cell-cell contacts, as well as variations in lipid and protein content in TGF-β treated cells. The combination of these consecutive techniques on the same cells provides a comprehensive understanding of podocyte morphology. Additionally, the results can also be used to train automated intelligence networks to predict various outcomes related to podocyte injury in the future.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...