GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cells, MDPI AG, Vol. 9, No. 10 ( 2020-09-29), p. 2196-
    Abstract: Alzheimer’s disease (AD) is an age-related detrimental dementia. Amyloid beta peptides (Aβ) play a crucial role in the pathology of AD. In familial AD, Aβ are generated from the full-length amyloid beta precursor protein (APP) via dysregulated proteolytic processing; however, in the case of sporadic AD, the mechanism of Aβ biogenesis remains elusive. circRNAs are a class of transcripts preferentially expressed in brain. We identified a circRNA harboring the Aβ-coding region of the APP gene termed circAβ-a. This circular RNA was detected in the brains of AD patients and non-dementia controls. With the aid of our recently established approach for analysis of circRNA functions, we demonstrated that circAβ-a is efficiently translated into a novel Aβ-containing Aβ175 polypeptide (19.2 KDa) in both cultured cells and human brain. Furthermore, Aβ175 was shown to be processed into Aβ peptides—a hallmark of AD. In summary, our analysis revealed an alternative pathway of Aβ biogenesis. Consequently, circAβ-a and its corresponding translation product could potentially represent novel therapeutic targets for AD treatment. Importantly, our data point to yet another evolutionary route for potentially increasing proteome complexity by generating additional polypeptide variants using back-splicing of primary transcripts that yield circular RNA templates.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Molecular Sciences Vol. 22, No. 7 ( 2021-03-31), p. 3613-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 7 ( 2021-03-31), p. 3613-
    Abstract: Prader-Willi syndrome (PWS) is a neurogenetic multifactorial disorder caused by the deletion or inactivation of paternally imprinted genes on human chromosome 15q11-q13. The affected homologous locus is on mouse chromosome 7C. The positional conservation and organization of genes including the imprinting pattern between mice and men implies similar physiological functions of this locus. Therefore, considerable efforts to recreate the pathogenesis of PWS have been accomplished in mouse models. We provide a summary of different mouse models that were generated for the analysis of PWS and discuss their impact on our current understanding of corresponding genes, their putative functions and the pathogenesis of PWS. Murine models of PWS unveiled the contribution of each affected gene to this multi-facetted disease, and also enabled the establishment of the minimal critical genomic region (PWScr) responsible for core symptoms, highlighting the importance of non-protein coding genes in the PWS locus. Although the underlying disease-causing mechanisms of PWS remain widely unresolved and existing mouse models do not fully capture the entire spectrum of the human PWS disorder, continuous improvements of genetically engineered mouse models have proven to be very powerful and valuable tools in PWS research.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 15 ( 2022-08-05), p. 8729-
    Abstract: Prader–Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by the deletion or inactivation of paternally expressed imprinted genes at the chromosomal region 15q11–q13. The PWS-critical region (PWScr) harbors tandemly repeated non-protein coding IPW-A exons hosting the intronic SNORD116 snoRNA gene array that is predominantly expressed in brain. Paternal deletion of PWScr is associated with key PWS symptoms in humans and growth retardation in mice (PWScr model). Dysregulation of the hypothalamic–pituitary axis (HPA) is thought to be causally involved in the PWS phenotype. Here we performed a comprehensive reverse transcription quantitative PCR (RT-qPCR) analysis across nine different brain regions of wild-type (WT) and PWScr mice to identify stably expressed reference genes. Four methods (Delta Ct, BestKeeper, Normfinder and Genorm) were applied to rank 11 selected reference gene candidates according to their expression stability. The resulting panel consists of the top three most stably expressed genes suitable for gene-expression profiling and comparative transcriptome analysis of WT and/or PWScr mouse brain regions. Using these reference genes, we revealed significant differences in the expression patterns of Igfbp7, Nlgn3 and three HPA associated genes: Pcsk1, Pcsk2 and Nhlh2 across investigated brain regions of wild-type and PWScr mice. Our results raise a reasonable doubt on the involvement of the Snord116 in posttranscriptional regulation of Nlgn3 and Nhlh2 genes. We provide a valuable tool for expression analysis of specific genes across different areas of the mouse brain and for comparative investigation of PWScr mouse models to discover and verify different regulatory pathways affecting this complex disorder.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 13 ( 2022-06-23), p. 6994-
    Abstract: The dysregulation of microRNAs (miRNAs) has been known to play important roles in tumor development and progression. However, the understanding of the involvement of miRNAs in regulating tumor-associated macrophages (TAMs) and how these TAM-related miRNAs (TRMs) modulate cancer progression is still in its infancy. This study aims to explore the prognostic value of TRMs in breast cancer via the construction of a novel TRM signature. Potential TRMs were identified from the literature, and their prognostic value was evaluated using 1063 cases in The Cancer Genome Atlas Breast Cancer database. The TRM signature was further validated in the external Gene Expression Omnibus GSE22220 dataset. Gene sets enrichment analyses were performed to gain insight into the biological functions of this TRM signature. An eleven-TRM signature consisting of mir-21, mir-24-2, mir-125a, mir-221, mir-22, mir-501, mir-365b, mir-660, mir-146a, let-7b and mir-31 was constructed. This signature significantly differentiated the high-risk group from the low-risk in terms of overall survival (OS)/ distant-relapse free survival (DRFS) (p value 〈 0.001). The prognostic value of the signature was further enhanced by incorporating other independent prognostic factors in a nomogram-based prediction model, yielding the highest AUC of 0.79 (95% CI: 0.72–0.86) at 5-year OS. Enrichment analyses confirmed that the differentially expressed genes were mainly involved in immune-related pathways such as adaptive immune response, humoral immune response and Th1 and Th2 cell differentiation. This eleven-TRM signature has great potential as a prognostic factor for breast cancer patients besides unravelling the dysregulated immune pathways in high-risk breast cancer.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...