GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Biomedicines, MDPI AG, Vol. 9, No. 6 ( 2021-06-19), p. 695-
    Abstract: Genetic evidence suggests that three members of the VAV family (VAV1, VAV2 and VAV3) of signal transduction proteins could play important roles in rheumatoid arthritis. However, it is not known currently whether the inhibition of these proteins protects against this disease and, if so, the number of family members that must be eliminated to get a therapeutic impact. To address this issue, we have used a collection of single and compound Vav family knockout mice in experimental models for antigen-dependent (methylated bovine serum albumin injections) and neutrophil-dependent (Zymosan A injections) rheumatoid arthritis in mice. We show here that the specific elimination of Vav1 is sufficient to block the development of antigen-induced arthritis. This protection is likely associated with the roles of this Vav family member in the development and selection of immature T cells within the thymus as well as in the subsequent proliferation and differentiation of effector T cells. By contrast, we have found that depletion of Vav2 reduces the number of neutrophils present in the joints of Zymosan A-treated mice. Despite this, the elimination of Vav2 does not protect against the joint degeneration triggered by this experimental model. These findings indicate that Vav1 is the most important pharmacological target within this family, although its main role is limited to the protection against antigen-induced rheumatoid arthritis. They also indicate that the three Vav family proteins do not play redundant roles in these pathobiological processes.
    Type of Medium: Online Resource
    ISSN: 2227-9059
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2720867-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Medicina, MDPI AG, Vol. 57, No. 9 ( 2021-09-10), p. 954-
    Abstract: Background: Alzheimer’s disease (AD) is characterized by the presence of β-amyloid plaques and neurofibrillary tangles, while Lewy body dementia (LBD) is characterized by α-synuclein (α-syn) inclusions. Some authors examine α-syn protein in the neurodegeneration process of AD and propose to consider cerebrospinal fluid (CSF) α-syn as a possible additional biomarker to the so-called “core” of AD. Objective: To determine whether there is a correlation between α-syn levels and “core” AD biomarkers in patients with mild cognitive impairment (MCI). Materials and methods: In total, 81 patients in the early stages of MCI were selected from the outpatient dementia consultation in Alicante General Hospital. Using a cross-sectional case–control design, patients were analyzed in four groups: stable MCI (MCIs; n = 25), MCI due to AD (MCI-AD; n = 32), MCI due to LBD (MCI-LBD; n = 24) and a control group of patients with acute or chronic headache (Ctrl; n = 18). Correlation between CSF protein levels in the different groups was assessed by the Rho Spearman test. Results: We found positive correlations between T-tau protein and α-syn (ρ = 0.418; p value 〈 0.05) and p-tau181p and α-syn (ρ = 0.571; p value 〈 0.05) exclusively in the MCI-AD group. Conclusion: The correlation found between α-syn and tau proteins in the first stages of AD support the involvement of α-syn in the pathogenesis of AD. This result may have clinical and diagnostic implications, as well as help to apply the new concept of “precision medicine” in patients with MCI.
    Type of Medium: Online Resource
    ISSN: 1648-9144
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2088820-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Biology Vol. 10, No. 9 ( 2021-09-08), p. 888-
    In: Biology, MDPI AG, Vol. 10, No. 9 ( 2021-09-08), p. 888-
    Abstract: Guanosine nucleotide exchange factors (GEFs) are responsible for catalyzing the transition of small GTPases from the inactive (GDP-bound) to the active (GTP-bound) states. RHO GEFs, including VAV proteins, play essential signaling roles in a wide variety of fundamental cellular processes and in human diseases. Although the most widespread archetype in the field is that RHO GEFs exert proactive functions in cancer, recent studies in mice and humans are providing new insights into the in vivo function of these proteins in cancer. These results suggest a more complex scenario where the role of GEFs is not so clearly defined. For example, VAV1 can unexpectedly play non-catalytic tumor suppressor functions in T-cell acute lymphoblastic leukemia (T-ALL) by controlling the levels of the active form of NOTCH1 (ICN1). This review focuses on emerging work unveiling tumor suppressor roles for these proteins that should prompt a reevaluation of the role of VAV GEF family in tumor biology.
    Type of Medium: Online Resource
    ISSN: 2079-7737
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661517-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...