GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Sustainability, MDPI AG, Vol. 15, No. 18 ( 2023-09-08), p. 13462-
    Abstract: This study explores the interplay among economic growth, financial globalization, urbanization, fossil fuel consumption, and renewable energy usage and their combined impact on the load capacity factor in Mexico. This research employs the load capacity factor as a unique measure of ecological health, facilitating a comprehensive ecosystem assessment by sequentially evaluating biocapacity and ecological effects. Using time series data spanning from 1971 to 2018, this study employs the Autoregressive Distributed Lag (ARDL) method to analyze both long-term and short-term dynamics and cointegration. The findings reveal that economic growth, fossil fuel usage, and urbanization reduce Mexico’s load capacity factor, thereby diminishing environmental quality. In contrast, the adoption of renewable energy sources and the influence of financial globalization exhibit positive effects on the load capacity factor over the long and short term. These outcomes remain consistent even when compared with alternative estimation techniques, including dynamic ordinary least squares (DOLS), fully modified least squares (FMOLS), and canonical cointegrating regression (CCR). As a priority, Mexican policymakers should accelerate the transition to renewable energy sources, encourage sustainable urban development, and foster a more ecologically conscious economic agenda. Furthermore, promoting greener technologies can enhance the load capacity and mitigate environmental degradation. Ultimately, Mexico can establish an environment conducive to expanding sustainable investments by encouraging cross-border investments, enabling global trade in financial services, and cultivating greater integration of capital and financial markets.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Journal of Risk and Financial Management Vol. 16, No. 4 ( 2023-03-29), p. 216-
    In: Journal of Risk and Financial Management, MDPI AG, Vol. 16, No. 4 ( 2023-03-29), p. 216-
    Abstract: Cryptocurrencies are in high demand now due to their volatile and untraceable nature. Bitcoin, Ethereum, and Dogecoin are just a few examples. This research seeks to identify deception and probable fraud in Ethereum transactional processes. We have developed this capability via ChaosNet, an Artificial Neural Network constructed using Generalized Luröth Series maps. Chaos has been objectively discovered in the brain at many spatiotemporal scales. Several synthetic neuronal simulations, including the Hindmarsh–Rose model, possess chaos, and individual brain neurons are known to display chaotic bursting phenomena. Although chaos is included in several Artificial Neural Networks (ANNs), for instance, in Recursively Generating Neural Networks, no ANNs exist for classical tasks entirely made up of chaoticity. ChaosNet uses the chaotic GLS neurons’ property of topological transitivity to perform classification problems on pools of data with cutting-edge performance, lowering the necessary training sample count. This synthetic neural network can perform categorization tasks by gathering a definite amount of training data. ChaosNet utilizes some of the best traits of networks composed of biological neurons, which derive from the strong chaotic activity of individual neurons, to solve complex classification tasks on par with or better than standard Artificial Neural Networks. It has been shown to require much fewer training samples. This ability of ChaosNet has been well exploited for the objective of our research. Further, in this article, ChaosNet has been integrated with several well-known ML algorithms to cater to the purposes of this study. The results obtained are better than the generic results.
    Type of Medium: Online Resource
    ISSN: 1911-8074
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2739117-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Forests, MDPI AG, Vol. 12, No. 10 ( 2021-09-22), p. 1294-
    Abstract: Malaysia has a large extent of forest cover that plays a crucial role in storing biomass carbon and enhancing carbon sink (carbon sequestration) and reducing atmospheric greenhouse gas emissions, which helps to reduce the negative impacts of global climate change. This article estimates the economic value of forest carbon stock and carbon value per hectare of forested area based on the price of removing per ton CO2eq in USD from 1990 to 2050. The economic value of biomass carbon stored in the forests is estimated at nearly USD 51 billion in 2020 and approximately USD 41 billion in 2050, whereas carbon value per hectare forest area is estimated at USD 2885 in 2020 and USD 2388 in 2050. If the BAU scenario of forest loss (converting forests to other land use) continues, the projected estimation of carbon stock and its economic value might fall until 2050 unless further initiatives on proper planning of forest management and ambitious policy implementation are taken. Instead, Malaysia’s CO2 emission growth started to fall after 2010 due to rising forest carbon sink of 282 million tons between 2011 and 2016, indicating a huge potential of Malaysian forests for future climate change mitigation. The estimated and projected value of carbon stock in Malaysian forest biomass, annual growth of forest carbon, forest carbon density and carbon sink would be useful for the better understanding of enhancing carbon sink by avoiding deforestation, sustainable forest management, forest conservation and protection, accurate reporting of national carbon inventories and policy-making decisions. The findings of this study could also be useful in meeting emission reduction targets and policy implementation related to climate change mitigation in Malaysia.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Forests, MDPI AG, Vol. 11, No. 6 ( 2020-06-11), p. 670-
    Abstract: Over the past few decades, there has been a rapid change in forest and land cover, especially in tropical forests due to massive deforestation. The major factor responsible for the changes is to fulfill the growing demand of increasing population through agricultural intensification, rural settlements, and urbanization. Monitoring forest cover and vegetation are essential for detecting regional and global environmental changes. The present study evaluates the influence of deforestation on land surface temperature (LST) in the states of Kedah and Perak, Malaysia, between 1988 and 2017. The trend in forest cover change over the time span of 29 years, was analyzed using Landsat 5 and Landsat 8 satellite images to map the sequence of forest cover change. With the measurement of deforestation and its relationship with LST as an end goal, the Normalized Difference Vegetation Index (NDVI) was used to determine forest health, and the spectral radiance model was used to extract the LST. The findings of the study show that nearly 16% (189,423 ha) of forest cover in Perak and more than 9% (33,391 ha) of forest cover in Kedah have disappeared within these 29 years as a result of anthropogenic activities. The correlation between the LST and NDVI is related to the distribution of forests, where LST is inversely related to NDVI. A strong correlation between LST and NDVI was observed in this study, where the average mean of LST in Kedah (25 °C) is higher than in Perak (22.6 °C). This is also reflected by the decreased NDVI value from 0.6 to 0.5 in 2017 at both states. This demonstrated that a decrease in the vegetation area leads to an increase in the surface temperature. The resultant forest change map would be helpful for forest management in terms of identifying highly vulnerable areas. Moreover, it could help the local government to formulate a land management plan.
    Type of Medium: Online Resource
    ISSN: 1999-4907
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527081-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Minerals, MDPI AG, Vol. 10, No. 1 ( 2020-01-06), p. 52-
    Abstract: This study was conducted to evaluate the strength and volume change characteristics of a sedimentary residual soil mixed with bentonite (S1) when treated with three different enzymes. In addition, three reference clays including bentonite, illite, and kaolinite were also treated with enzymes to study the effect on their strength characteristics. Soil samples prepared at the optimum moisture content (OMC) were sealed and cured for four months. After curing, reference clays were tested for unconfined compressive strength (UCS). For swell tests, the S1 soil samples were placed on porous stones, which were immersed in water to allow capillary soaking of the samples. S1 samples were allowed to dry at ambient temperature for shrinkage test until the rate of reduction in volume became negligible. On completion of swell tests, the samples were tested for UCS to determine the decrease in strength due to saturation. No increase in strength and decrease in volume change were observed for any of the enzymes and dosages. Field Emission Scanning Electron Microscope (FESEM) showed some dense packing of particles for treated samples, whereas X-ray diffraction (XRD) did not reveal any change; in fact, the pattern for untreated and treated soil samples were indistinguishable.
    Type of Medium: Online Resource
    ISSN: 2075-163X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2655947-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Sustainability Vol. 12, No. 22 ( 2020-11-11), p. 9375-
    In: Sustainability, MDPI AG, Vol. 12, No. 22 ( 2020-11-11), p. 9375-
    Abstract: This study measures the relationship and dynamic impacts of economic growth and forested area on carbon dioxide (CO2) emissions in Malaysia. Time series data over the period of 1990 to 2016 were used by employing the dynamic ordinary least squared (DOLS) approach. The results of DOLS estimation indicate that the coefficient of economic growth is positive and significant with CO2 emissions, meaning that RM1 million increase in gross domestic product (GDP) is associated with an increase in CO2 emissions of 0.931 kilo tons. Instead, the long-run coefficient of forested area found negative and significant, which implies that declining one hectare of forested area (i.e., deforestation) has an impact of three kilo tons of CO2 emissions rise in Malaysia. Our study findings indicate that economic growth and deforested area have an adverse effect on Malaysia’s carbon emissions where GDP growth fosters carbon emissions at a faster rate. Thus, the effective implementation of policy measures and economic instruments including afforestation and reforestation, forest conservation, sustainable forest management, REDD+ (reducing emissions from deforestation and forest degradation plus) mechanism and other emission reduction mechanisms inter alia could be useful for reducing carbon emissions while decreasing deforestation and maintaining the long-term economic growth in Malaysia.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...