GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Current Oncology, MDPI AG, Vol. 29, No. 9 ( 2022-08-31), p. 6303-6313
    Abstract: Background: The PREDICT-HN study aimed to systematically assess the kinetics of imaging MR biomarkers during head and neck radiotherapy. Methods: Patients with intact squamous cell carcinoma of the head and neck were enrolled. Pre-, during, and post-treatment MRI were obtained. Serial GTV and ADC measurements were recorded. The correlation between each feature and the GTV was calculated using Spearman’s correlation coefficient. The linear mixed model was used to evaluate the change in GTV over time. Results: A total of 41 patients completed the study. The majority (76%) had oropharyngeal cancer. A total of 36 patients had intact primary tumours that can be assessed on MRI, and 31 patients had nodal disease with 46 nodes assessed. Median primary GTV (GTVp) size was 14.1cc. The rate of GTVp shrinkage was highest between pre-treatment and week 4. Patients with T3-T4 tumours had a 3.8-fold decrease in GTVp compared to T1-T2 tumours. The ADC values correlated with residual GTVp. The median nodal volume (GTVn) was 12.4cc. No clinical features were found to correlate with GTVn reduction. The overall change in ADC for GTVn from pre-treatment was significant for 35th–95th percentiles in weeks 1–4 (p 〈 0.001). Conclusion: A discrepancy in the trajectory of ADC between primary and nodal sites suggested that they exhibit different treatment responses and should be analysed separately in future studies.
    Type of Medium: Online Resource
    ISSN: 1718-7729
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2270777-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 16 ( 2020-08-12), p. 5788-
    Abstract: Development of targeted therapies for triple-negative breast cancer (TNBC) is an unmet medical need. Cisplatin has demonstrated its promising potential for the treatment of TNBC in clinical trials; however, cisplatin treatment is associated with hypoxia that, in turn, promotes cancer stem cell (CSC) enrichment and drug resistance. Therapeutic approaches to attenuate this may lead to increased cisplatin efficacy in the clinic for the treatment of TNBC. In this report we analyzed clinical datasets of TNBC and found that TNBC patients possessed higher levels of EGFR and hypoxia gene expression. A similar expression pattern was also observed in cisplatin-resistant ovarian cancer cells. We, thus, developed a new therapeutic approach to inhibit EGFR and hypoxia by combination treatment with metformin and gefitinib that sensitized TNBC cells to cisplatin and led to the inhibition of both CD44+/CD24− and ALDH+ CSCs. We demonstrated a similar inhibition efficacy on organotypic cultures of TNBC patient samples ex vivo. Since these drugs have already been used frequently in the clinic; this study illustrates a novel, clinically translatable therapeutic approach to treat patients with TNBC.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancers, MDPI AG, Vol. 15, No. 4 ( 2023-02-16), p. 1259-
    Abstract: Deep learning has achieved significant success in malignant melanoma diagnosis. These diagnostic models are undergoing a transition into clinical use. However, with melanoma diagnostic accuracy in the range of ninety percent, a significant minority of melanomas are missed by deep learning. Many of the melanomas missed have irregular pigment networks visible using dermoscopy. This research presents an annotated irregular network database and develops a classification pipeline that fuses deep learning image-level results with conventional hand-crafted features from irregular pigment networks. We identified and annotated 487 unique dermoscopic melanoma lesions from images in the ISIC 2019 dermoscopic dataset to create a ground-truth irregular pigment network dataset. We trained multiple transfer learned segmentation models to detect irregular networks in this training set. A separate, mutually exclusive subset of the International Skin Imaging Collaboration (ISIC) 2019 dataset with 500 melanomas and 500 benign lesions was used for training and testing deep learning models for the binary classification of melanoma versus benign. The best segmentation model, U-Net++, generated irregular network masks on the 1000-image dataset. Other classical color, texture, and shape features were calculated for the irregular network areas. We achieved an increase in the recall of melanoma versus benign of 11% and in accuracy of 2% over DL-only models using conventional classifiers in a sequential pipeline based on the cascade generalization framework, with the highest increase in recall accompanying the use of the random forest algorithm. The proposed approach facilitates leveraging the strengths of both deep learning and conventional image processing techniques to improve the accuracy of melanoma diagnosis. Further research combining deep learning with conventional image processing on automatically detected dermoscopic features is warranted.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancers, MDPI AG, Vol. 14, No. 22 ( 2022-11-12), p. 5562-
    Abstract: A well-established lung-cancer-survival-prediction model that relies on multiple data types, multiple novel machine-learning algorithms, and external testing is absent in the literature. This study aims to address this gap and determine the critical factors of lung cancer survival. We selected non-small-cell lung cancer patients from a retrospective dataset of the Taipei Medical University Clinical Research Database and Taiwan Cancer Registry between January 2008 and December 2018. All patients were monitored from the index date of cancer diagnosis until the event of death. Variables, including demographics, comorbidities, medications, laboratories, and patient gene tests, were used. Nine machine-learning algorithms with various modes were used. The performance of the algorithms was measured by the area under the receiver operating characteristic curve (AUC). In total, 3714 patients were included. The best performance of the artificial neural network (ANN) model was achieved when integrating all variables with the AUC, accuracy, precision, recall, and F1-score of 0.89, 0.82, 0.91, 0.75, and 0.65, respectively. The most important features were cancer stage, cancer size, age of diagnosis, smoking, drinking status, EGFR gene, and body mass index. Overall, the ANN model improved predictive performance when integrating different data types.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...