GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Sensors Vol. 22, No. 23 ( 2022-11-28), p. 9243-
    In: Sensors, MDPI AG, Vol. 22, No. 23 ( 2022-11-28), p. 9243-
    Abstract: In cognitive neuroscience research, computational models of event-related potentials (ERP) can provide a means of developing explanatory hypotheses for the observed waveforms. However, researchers trained in cognitive neurosciences may face technical challenges in implementing these models. This paper provides a tutorial on developing recurrent neural network (RNN) models of ERP waveforms in order to facilitate broader use of computational models in ERP research. To exemplify the RNN model usage, the P3 component evoked by target and non-target visual events, measured at channel Pz, is examined. Input representations of experimental events and corresponding ERP labels are used to optimize the RNN in a supervised learning paradigm. Linking one input representation with multiple ERP waveform labels, then optimizing the RNN to minimize mean-squared-error loss, causes the RNN output to approximate the grand-average ERP waveform. Behavior of the RNN can then be evaluated as a model of the computational principles underlying ERP generation. Aside from fitting such a model, the current tutorial will also demonstrate how to classify hidden units of the RNN by their temporal responses and characterize them using principal component analysis. Statistical hypothesis testing can also be applied to these data. This paper focuses on presenting the modelling approach and subsequent analysis of model outputs in a how-to format, using publicly available data and shared code. While relatively less emphasis is placed on specific interpretations of P3 response generation, the results initiate some interesting discussion points.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pharmaceutics, MDPI AG, Vol. 15, No. 2 ( 2023-01-18), p. 322-
    Abstract: AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease. Optimisation of NDI1 (ophNdi1) substantially increased expression in vivo, protected RGCs and increased visual function, as assessed by optokinetic and photonegative response, in a rotenone-induced murine model. In addition, ophNdi1 increased cellular oxidative phosphorylation and ATP production and protected cells from rotenone insult to a significantly greater extent than wild type NDI1. Significantly, ophNdi1 treatment of complex I deficient patient-derived fibroblasts increased oxygen consumption and ATP production rates, demonstrating the potential of ophNdi1 as a candidate therapy for ocular disorders where mitochondrial deficits comprise an important feature.
    Type of Medium: Online Resource
    ISSN: 1999-4923
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527217-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 19, No. 21 ( 2022-10-24), p. 13832-
    Abstract: Engaging women with obesity in health-related studies during preconception is challenging. Limited data exists relating to their participation. The aim of this study is to explore the experiences and opinions of women participating in a weight-related, preconception trial. This is an explanatory sequential (quan-QUAL) mixed-methods Study Within A Trial, embedded in the GetGutsy randomized controlled trial (ISRCTN11295995). Screened participants completed an online survey of eight questions (single or multiple choice and Likert scale) on recruitment, motivations and opinions on study activities. Participants with abdominal obesity (waist circumference ≥ 80 cm) were invited to a subsequent semi-structured, online focus group (n = 2, 9 participants) that was transcribed and analyzed using inductive thematic analysis, with a pragmatic epistemological approach. The survey (n = 102) showed the main research participation motivations were supporting health research (n = 38, 37.3%) and wanting health screening (n = 30, 29.4%). Most participants were recruited via email (n = 35, 34.7%) or social media (n = 15, 14.7%). In the FGs, participants valued flexibility, convenience and. research methods that aligned with their lifestyles. Participants had an expanded view of health that considered emotional well-being and balance alongside more traditional medical assessments. Clinical trialists should consider well-being, addressing the interconnectedness of health and incorporate a variety of research activities to engage women of reproductive age with obesity.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...