GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Sustainability, MDPI AG, Vol. 13, No. 5 ( 2021-02-24), p. 2443-
    Abstract: A number of studies have indicated that short food supply chains could create economic, social, and environmental benefits, but most of those chains were implemented in developed countries. This research aims to find out the characteristics of short food supply chains and their benefits to small farmers in Vietnam, which is a developing country, based on the survey results from 338 small farmers in the third quarter of 2020, with the support of Stata 14 software. The results showed that the short food supply chains in the survey sample in Vietnam were characterized by two main actors: small farmers and distributors. Farmers could sell products flexibly at the local market. There was some initial evidence to prove that these chains helped to stabilize the input, output price, and revenue; formulated sustainable income; and increased the satisfaction and confidence of farmers. They eliminated gender discrimination in rural areas and improved livelihood for ethnic minorities. These chains also enhanced the mindset on green, organic, and clean production of farmers, which in turn created environmental benefits. COVID-19 has posed a negative impact on the income of farmers and made them change their production and sales method. Therefore, the research could suggest some policies to sustainably develop the short food supply chains in Vietnam in the future.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancers, MDPI AG, Vol. 14, No. 14 ( 2022-07-18), p. 3492-
    Abstract: Glioma is a Center Nervous System (CNS) neoplasm that arises from the glial cells. In a new scheme category of the World Health Organization 2016, lower-grade gliomas (LGGs) are grade II and III gliomas. Following the discovery of suppression of negative immune regulation, immunotherapy is a promising effective treatment method for lower-grade glioma patients. However, the therapy is not effective for all types of LGGs, and tumor mutational burden (TMB) has been shown to be a potential biomarker for the susceptibility and prognosis of immunotherapy in lower-grade glioma patients. Hence, predicting TMB benefits brain cancer patients. In this study, we investigated the correlation between MRI (magnetic resonance imaging)-based radiomic features and TMB in LGG by applying machine learning methods. Six machine learning classifiers were examined on the features extracted from the genetic algorithm. Subsequently, a light gradient boosting machine (LightGBM) succeeded in selecting 11 radiomics signatures for TMB classification. Our LightGBM model resulted in high accuracy of 0.7936, and reached a balance between sensitivity and specificity, achieving 0.76 and 0.8107, respectively. To our knowledge, our study represents the best model for classification of TMB in LGG patients at present.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecules, MDPI AG, Vol. 28, No. 7 ( 2023-03-24), p. 2912-
    Abstract: Multi-drug resistance to antibiotics represents a growing challenge in treating infectious diseases. Outside the hospital, bacteria with the multi-drug resistance (MDR) phenotype have an increased prevalence in anthropized environments, thus implying that chemical stresses, such as metals, hydrocarbons, organic compounds, etc., are the source of such resistance. There is a developing hypothesis regarding the role of metal contamination in terrestrial and aquatic environments as a selective agent in the proliferation of antibiotic resistance caused by the co-selection of antibiotic and metal resistance genes carried by transmissible plasmids and/or associated with transposons. Efflux pumps are also known to be involved in either antibiotic or metal resistance. In order to deal with these situations, microorganisms use an effective strategy that includes a range of expressions based on biochemical and genetic mechanisms. The data from numerous studies suggest that heavy metal contamination could affect the dissemination of antibiotic-resistant genes. Environmental pollution caused by anthropogenic activities could lead to mutagenesis based on the synergy between antibiotic efficacy and the acquired resistance mechanism under stressors. Moreover, the acquired resistance includes plasmid-encoded specific efflux pumps. Soil microbiomes have been reported as reservoirs of resistance genes that are available for exchange with pathogenic bacteria. Importantly, metal-contaminated soil is a selective agent that proliferates antibiotic resistance through efflux pumps. Thus, the use of multi-drug efflux pump inhibitors (EPIs) originating from natural plants or synthetic compounds is a promising approach for restoring the efficacy of existing antibiotics, even though they face a lot of challenges.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Materials, MDPI AG, Vol. 14, No. 24 ( 2021-12-15), p. 7741-
    Abstract: Samples of the bimetallic-based NH2-MIL-125(Ti) at a ratio of Mn+/Ti4+ is 0.15 (Mn+: Ni2+, Co2+ and Fe3+) were first synthesized using the solvothermal method. Their fundamental properties were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectra, scanning electron microscopy (SEM), N2 adsorption–desorption measurements, and UV–Vis diffuse reflectance spectroscopy (UV-Vis DRS). The as-acquired materials were used as high-efficiency heterogeneous photocatalysts to remove Rhodamine B (RhB) dye under visible light. The results verified that 82.4% of the RhB (3 × 10−5 M) was degraded within 120 min by 15% Fe/Ti−MOFs. Furthermore, in the purpose of degrading Rhodamine B (RhB), the rate constant for the 15% Fe/Ti-MOFs was found to be 2.6 times as fast as that of NH2-MIL-125(Ti). Moreover, the 15% Fe/Ti-MOFs photocatalysts remained stable after three consecutive cycles. The trapping test demonstrated that the major active species in the degradation of the RhB process were hydroxyl radicals (HO∙) and holes (h+).
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Diagnostics Vol. 10, No. 5 ( 2020-05-20), p. 326-
    In: Diagnostics, MDPI AG, Vol. 10, No. 5 ( 2020-05-20), p. 326-
    Abstract: Alzheimer’s disease (AD) is a complex neurodegenerative disease that requires extremely specific biomarkers for its diagnosis. For current diagnostics capable of identifying AD, the development and validation of early stage biomarkers is a top research priority. Body-fluid biomarkers might closely reflect synaptic dysfunction in the brain and, thereby, could contribute to improving diagnostic accuracy and monitoring disease progression, and serve as markers for assessing the response to disease-modifying therapies at early onset. Here, we highlight current advances in the research on the capabilities of body-fluid biomarkers and their role in AD pathology. Then, we describe and discuss current applications of the potential biomarkers in clinical diagnostics in AD.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  International Journal of Molecular Sciences Vol. 21, No. 9 ( 2020-04-30), p. 3165-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 9 ( 2020-04-30), p. 3165-
    Abstract: The exact connection between Alzheimer’s disease (AD) and type 2 diabetes is still in debate. However, poorly controlled blood sugar may increase the risk of developing Alzheimer’s. This relationship is so strong that some have called Alzheimer’s “diabetes of the brain” or “type 3 diabetes (T3D)”. Given more recent studies continue to indicate evidence linking T3D with AD, this review aims to demonstrate the relationship between T3D and AD based on the fact that both the processing of amyloid-β (Aβ) precursor protein toxicity and the clearance of Aβ are attributed to impaired insulin signaling, and that insulin resistance mediates the dysregulation of bioenergetics and progress to AD. Furthermore, insulin-related therapeutic strategies are suggested to succeed in the development of therapies for AD by slowing down their progressive nature or even halting their future complications.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 10 ( 2021-05-17), p. 5267-
    Abstract: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a member of the colony-stimulating factor (CSF) family, which functions to enhance the proliferation and differentiation of hematopoietic stem cells and other hematopoietic lineages such as neutrophils, dendritic cells, or macrophages. These proteins have thus generated considerable interest in clinical therapy research. A current obstacle to the prokaryotic production of human GM-CSF (hGM-CSF) is its low solubility when overexpressed and subsequent complex refolding processes. In our present study, the solubility of hGM-CSF was examined when combined with three N-terminal fusion tags in five E. coli strains at three different expression temperatures. In the five E. coli strains BL21 (DE3), ClearColi BL21 (DE3), LOBSTR, SHuffle T7 and Origami2 (DE3), the hexahistidine-tagged hGM-CSF showed the best expression but was insoluble in all cases at each examined temperature. Tagging with the maltose-binding protein (MBP) and the b′a′ domain of protein disulfide isomerase (PDIb′a′) greatly improved the soluble overexpression of hGM-CSF at 30 °C and 18 °C. The solubility was not improved using the Origami2 (DE3) and SHuffle T7 strains that have been engineered for disulfide bond formation. Two conventional chromatographic steps were used to purify hGM-CSF from the overexpressed PDIb′a′-hGM-CSF produced in ClearColi BL21 (DE3). In the experiment, 0.65 mg of hGM-CSF was isolated from a 0.5 L flask culture of these E. coli and showed a 98% purity by SDS-PAGE analysis and silver staining. The bioactivity of this purified hGM-CSF was measured at an EC50 of 16.4 ± 2 pM by a CCK8 assay in TF-1 human erythroleukemia cells.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Polymers, MDPI AG, Vol. 10, No. 6 ( 2018-06-08), p. 633-
    Abstract: In this paper, silver (Ag) nanoclusters-loaded graphitic carbon nitride (g-C3N4) nanosheets are synthesized and their physical properties as well as photocatalytic activities are systematically investigated by different techniques. The existence of Ag atoms in the form of nanoclusters (NCs) rather than well-crystallized nanoparticles are evidenced by X-ray diffraction patterns, SEM images, and XPS spectra. The deposition of Ag nanoclusters on the surface of g-C3N4 nanosheets affect the crystal structure and slightly reduce the band gap energy of g-C3N4. The sharp decrease of photoluminescence intensity indicates that g-C3N4/Ag heterojunctions successfully prevent the recombination of photo-generated electrons and holes. The photocatalytic activities of as-synthesized photocatalysts are demonstrated through the degradation of rhodamine B (RhB) solutions under Xenon lamp irradiation. It is demonstrated that the photocatalytic activity depends strongly on the molar concentration of Ag+ in the starting solution. The g-C3N4/Ag heterojunctions prepared from 0.01 M of Ag+ starting solution exhibit the highest photocatalytic efficiency and allow 100% degradation of RhB after being exposed for 60 min under a Xenon lamp irradiation, which is four times faster than that of pure g-C3N4 nanosheets.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Processes, MDPI AG, Vol. 10, No. 7 ( 2022-07-12), p. 1352-
    Abstract: Co-doped Fe-MOF bimetallic organic framework materials at different ratios were synthesized based on the solvothermal method, and we evaluated their morphological characteristics by modern analytical methods such as SEM, XRD, FT-IR, and isotherm of nitrogen adsorption-desorption (BET). The specific surface area of the 0.3 CoFe-MOF sample (280.9 m2/g) is much larger than the Fe-MOF and samples at other ratios. The post-synthesized materials were evaluated for their ability to absorb various dyes, including Methylene Blue (MB), Methyl orange (MO), Congo red (CR), and Rhodamine (RhB), and evaluated for the effects of pH, the initial concentration of the dye solution, time, and dose of adsorbent. The results show that the 0.3 CoFe-MOF material has a high adsorption capacity that is superior to both the original Fe-MOF and the CoFe-MOFs at other ratios. The highest adsorption capacity of MB dye by 0.3 CoFe-MOF reaches up to 562.1 mg/g at pH 10, the initial concentration of MB of 200 mg/L, after 90 min. The charged properties of the dyes and the charged nature of the bimetallic organic frameworks are best demonstrated through the adsorption of dye mixtures. The adsorption efficiency on the mixed system of cationic (MB) and anionic (MO) dyes yielded the highest removal efficiency of 70% and 81%, respectively, after 30 min. Therefore, the research has opened up the potential application of M/Fe-MOF modified materials and CoFe-MOF in organic dyes adsorption in wastewater treatment for environmental protection.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2720994-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Crystals, MDPI AG, Vol. 13, No. 6 ( 2023-06-16), p. 961-
    Abstract: Tin dioxide (SnO2) has recently been recognized as an excellent electron transport layer (ETL) for perovskite solar cells (PSCs) due to its advantageous properties, such as its high electron mobility, suitable energy band alignment, simple low-temperature process, and good chemical stability. In this work, nitrogen-doped graphene quantum dots (N-GQDs) were prepared using a hydrothermal method and then used to fabricate N-GQD:SnO2 nanocomposite ultrathin films. N-GQD:SnO2 nanocomposite ultrathin films were investigated and applied as electron transport layers in planar PSCs. The presence of N-GQDs with an average size of 6.2 nm in the nanocomposite improved its morphology and reduced surface defects. The excitation–emission contour map indicated that the N-GQDs exhibited a remarkably enhanced light-harvesting capability due to the possibility of absorbing UV light and producing emissions in the visible range. The quenching of photoluminescence spectra showed that the N-GQDs in nanocomposite ultrathin films improved electron extraction and reduced charge recombination. As a result, the power conversion efficiency (PCE) of our planar PSCs fabricated with the optimized N-GQD:SnO2 nanocomposite electron transport layer was improved by 20.4% over pristine SnO2-based devices.
    Type of Medium: Online Resource
    ISSN: 2073-4352
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661516-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...