GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Minerals, MDPI AG, Vol. 11, No. 2 ( 2021-01-30), p. 142-
    Abstract: The rare earth elements (REE), comprising 15 elements of the lanthanum series (La-Lu) together with yttrium (Y) and scandium (Sc), have become of particular interest because of their use, for example, in modern communications, renewable energy generation, and the electrification of transport. However, the security of supply of REE is considered to be at risk due to the limited number of sources, with dependence largely on one supplier that produced approximately 63% of all REE in 2019. As a result, there is a growing need to diversify supply. This has resulted in the drive to seek new resources elsewhere, and particularly on the deep-ocean floor. Here, we give a summary of REE distribution in minerals, versatile applications, and an update of their economic value. We present the most typical onshore methods for the determination of REE and examine methods for their offshore exploration in near real time. The motivation for this comes from recent studies over the past decade that showed ΣREE concentrations as high as 22,000 ppm in ocean-floor sediments in the Pacific Ocean. The ocean-floor sediments are evaluated in terms of their potential as resources of REE, while the likely economic cost and environmental impacts of deep-sea mining these are also considered.
    Type of Medium: Online Resource
    ISSN: 2075-163X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2655947-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Minerals, MDPI AG, Vol. 8, No. 8 ( 2018-07-30), p. 327-
    Abstract: The decarbonisation of our energy supply is reliant on new technologies that are raw material intensive and will require a significant increase in the production of metals to sustain them. Ferromanganese (FeMn) crusts are seafloor precipitates, enriched in metals such as cobalt and tellurium, both of which have a predicted future demand above current production rates. In this study, we investigate the texture and composition of FeMn crusts on Tropic Seamount, a typical Atlantic guyot off the coast of western Africa, as a basis for assessing the future mineral resource potential of Atlantic Seamounts. The majority of the summit is flat and covered by FeMn crusts with average thicknesses of 3–4 cm. The crusts are characterized by two dominant textures consisting of either massive pillared growth or more chaotic, cuspate sections of FeMn oxides, with an increased proportion of detrital and organic material. The Fe, Mn, and Co contents in the FeMn oxide layers are not affected by texture. However, detrital material and bioclasts can form about 50% of cuspate areas, and the dilution effect of this entrained material considerably reduces the Fe, Mn, and Co concentrations if the bulk samples are analyzed. Whilst Tropic Seamount meets many of the prerequisites for a crust mining area, the thickness of the crusts and their average metal composition means extraction is unlikely to be viable in the near future. The ability to exploit more difficult terrains or multiple, closely spaced edifices would make economic feasibility more likely.
    Type of Medium: Online Resource
    ISSN: 2075-163X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2655947-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...