GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Energies, MDPI AG, Vol. 16, No. 4 ( 2023-02-08), p. 1676-
    Abstract: The primary purpose of recent research on solar cells is to achieve a higher power conversion efficiency with stable characteristics. To push the developments of photovoltaic (PV) technology, tandem solar cells are being intensively researched, as they have higher power conversion efficiency (PCE) than single-junction cells. Perovskite solar cells (PSCs) are recently used as a top cell of tandem solar cells thanks to their tunable energy gap, high short circuit current, and low cost of fabrication. One of the main challenges in PSCs cells is the stability issue. Carbon perovskite solar cells (CPSCs) without a hole transport material (HTM) presented a promising solution for PSCs’ stability. The two-terminal monolithic tandem solar cells demonstrate the commercial tandem cells market. Consequently, all the proposed tandem solar cells in this paper are equivalent to two-terminal monolithic tandem devices. In this work, two two-terminal tandem solar cells are proposed and investigated using the SCAPS-1D device simulator. Carbon perovskite solar cell (CPSC) without hole transport material (HTM) is used as the top cell with a new proposed gradient doping in the perovskite layer. This proposal has led to a substantial enhancement of the stability issue known to be present in carbon perovskite cells. Moreover, a higher PCE, exceeding 22%, has been attained for the proposed CPSC. Two bottom cells are examined, Si and CIGS-GeTe solar cells. The suggested CPSC/Si and CPSC/CIGS-GeTe tandem solar cells have the advantage of having just two junctions, which reduces the complexity and cost of solar cells. The performance parameters are found to be improved. In specific, the PCEs of the two proposed cells are 19.89% and 24.69%, respectively.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Plants, MDPI AG, Vol. 11, No. 14 ( 2022-07-18), p. 1871-
    Abstract: Origanum majoranum L. is a Lamiaceae medicinal plant with culinary and ethnomedical applications. Its biological and phytochemical profiles have been extensively researched. Accordingly, this study aimed to investigate the chemical composition and the antibacterial and antioxidant properties of O. majoranum high features, as well as to search for techniques for activity optimization. A metabolomics study of the crude extract of O. majoranum using liquid chromatography-high-resolution electrospray ionization mass spectrometry (LC ± HR ± ESI ± MS) was conducted. Five fractions (petroleum ether, dichloromethane, ethyl acetate, n-butanol, and aqueous) were derived from the total extract of the aerial parts. Different chromatographic methods and NMR analysis were utilized to purify and identify the isolated phenolics (high features). Moreover, the antimicrobial, antibiofilm, and antioxidant activity of phenolics were performed. Results showed that metabolomic profiling of the crude extract of O. majoranum aerial parts revealed the presence of a variety of phytochemicals, predominantly phenolics, resulting in the isolation and identification of seven high-feature compounds comprising two phenolic acids, rosmarinic and caffeic acids, one phenolic diterpene, 7-methoxyepirosmanol, in addition to four flavonoids, quercetin, hesperitin, hesperidin, and luteolin. On the other hand, 7-methoxyepirosmanol (OM1) displayed the most antimicrobial and antioxidant potential. Such a phenolic principal activity improvement seems to be established after loading on gold nanoparticles.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Crystals, MDPI AG, Vol. 12, No. 7 ( 2022-06-21), p. 878-
    Abstract: The primary purpose of recent research has been to achieve a higher power conversion efficiency (PCE) with stable characteristics, either through experimental studies or through modeling and simulation. In this study, a theoretical analysis of an efficient perovskite solar cell (PSC) with cuprous oxide (Cu2O) as the hole transport material (HTM) and zinc oxysulfide (ZnOS) as the electron transport material (ETM) was proposed to replace the traditional HTMs or ETMs. In addition, the impact of doping the perovskite layer was investigated. The results show that the heterostructure of n-p PSC without an electron transport layer (ETL) could replace the traditional n-i-p structure with better performance metrics and more stability due to reducing the number of layers and interfaces. The impact of HTM doping and thickness was investigated. In addition, the influence of the energy gap of the absorber layer was studied. Furthermore, the proposed PSC without ETL was used as a top sub-cell with germanium-telluride (GeTe) as a bottom sub-cell to produce an efficient tandem cell and boost the PCE. An ETL-free PSC/GeTe tandem cell is proposed for the first time to provide an efficient and stable tandem solar cell with a PCE of 45.99%. Finally, a comparison between the performance metrics of the proposed tandem solar cell and those of other recent studies is provided. All the simulations performed in this study are accomplished by using SCAPS-1D.
    Type of Medium: Online Resource
    ISSN: 2073-4352
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661516-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Agronomy, MDPI AG, Vol. 13, No. 1 ( 2023-01-02), p. 149-
    Abstract: Microplastics (MPs) contamination is an emerging issue globally; however, adverse impacts of MPs on soil, plants and microbial activity have not been intensively studied. In this study, the potential effect of different levels of MPs (1.5, 7.5, 15%) has been investigated on soil properties, plant properties (Vicia Faba) and microbial activities through a pot experiment. The effect of biochar (BC: 2%) to mitigate the adverse effects of MP has also been examined. Soil properties (pH, EC, OM, CaCO3 and some elements) have significantly differed due to contamination of soil by MPs as well as by adding BC to the soil. The pH and CaCO3 were significantly increased more than in the control, while EC, TDS, available P, Mn and Fe were significantly decreased lower than the control, which implies adsorption on microplastic. Plant properties, such as enzymes, chlorophyll and fresh and dry weight in roots, were adversely affected by MPs contamination; however, BC mitigated this effect, especially with low contamination levels of MPs. The fresh and dry weight of the shoot was not significantly affected by MPs. The cytogenetic analysis showed that the mitotic index was significantly reduced compared to the control (9.39%), while BC increased the mitotic index at 1.5% MPs (7.11%) although it was less than the control. The percentage of abnormalities of V. faba root tip cells under different levels of MPs was significantly increased more than the control; however, BC mitigated this effect, especially at 7.5% MPs. The total count of bacteria and fungi even in soil or in the rhizosphere area did not follow a clear trend; however, the effect of BC was clear in increasing their activities. Microbial biomass carbon and nitrogen were also significantly affected by MPs and BC. In this study, the BC level was low, however, it mitigated some adverse effects of MPs, especially at 1.5 and 7.5% of MPs. Thus, the BC could be promising in mitigating the negative impacts of MPs when applied with suitable levels that need more future studies.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecules, MDPI AG, Vol. 17, No. 1 ( 2012-01-18), p. 971-988
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2012
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Energies, MDPI AG, Vol. 15, No. 24 ( 2022-12-13), p. 9426-
    Abstract: The wide use of communication layers in DC microgrids to transmit voltage and current measurements of each distributed generator unit (DGU) increases the possibility of exposure to cyber-attacks. Cyber-attackers can manipulate the measured data to distort the control system of microgrids, which may lead to a shutdown. This paper proposes distributed mitigation layers for the false data injection attacks (FDIA) on voltages and currents of DGUs in meshed DC microgrids. The proposed control strategy is based on integrating two layers for cyber-attack detection and mitigation to immune the primary and the secondary control loops of each DGU. The first layer is assigned to mitigate FDIAs on the voltage measurements needed for the voltage regulation task of the primary control loop. The second layer is devoted to the mitigation of FDIAs on the DGU current measurements, which are crucial for the secondary control level to guarantee the proper current sharing of each DGU. Artificial neural networks (ANNs) are employed to support these layers by estimating the authenticated measurements. Different simulation and experimental case studies are provided to demonstrate the proposed mitigation layers’ effectiveness in detecting and mitigating cyber-attacks on voltage and current measurements. The simulation and experimental results are provided to evaluate the dynamic performance of the suggested control approach and to ensure the accurate operation of DC microgrids despite the existence of cyber-attacks on the measurements employed in the control strategy. Moreover, the control strategy succeeds to keep the maximum voltage error and the maximum error in current sharing within tolerance.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...