GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancers, MDPI AG, Vol. 13, No. 23 ( 2021-11-25), p. 5921-
    Abstract: Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancers, MDPI AG, Vol. 15, No. 18 ( 2023-09-07), p. 4453-
    Abstract: Purpose: The isocitrate dehydrogenase (IDH) mutation has become one of the most important prognostic biomarkers in glioma management, indicating better treatment response and prognosis. IDH mutations confer neomorphic activity leading to the conversion of alpha-ketoglutarate (α-KG) to 2-hydroxyglutarate (2HG). The purpose of this study was to investigate the clinical potential of proton MR spectroscopy (1H-MRS) in identifying IDH-mutant gliomas by detecting characteristic resonances of 2HG and its complex interplay with other clinically relevant metabolites. Materials and Methods: Thirty-two patients with suspected infiltrative glioma underwent a single-voxel (SVS, n = 17) and/or single-slice-multivoxel (1H-MRSI, n = 15) proton MR spectroscopy (1H-MRS) sequence with an optimized echo-time (97 ms) on 3T-MRI. Spectroscopy data were analyzed using the linear combination (LC) model. Cramér–Rao lower bound (CRLB) values of 〈 40% were considered acceptable for detecting 2HG and 〈 20% for other metabolites. Immunohistochemical analyses for determining IDH mutational status were subsequently performed from resected tumor specimens and findings were compared with the results from spectral data. Mann–Whitney and chi-squared tests were performed to ascertain differences in metabolite levels between IDH-mutant and IDH-wild-type gliomas. Receiver operating characteristic (ROC) curve analyses were also performed. Results: Data from eight cases were excluded due to poor spectral quality or non-tumor-related etiology, and final data analyses were performed from 24 cases. Of these cases, 9/12 (75%) were correctly identified as IDH-mutant or IDH-wildtype gliomas through SVS and 10/12 (83%) through 1H-MRSI with an overall concordance rate of 79% (19/24). The sensitivity, specificity, positive predictive value, and negative predictive value were 80%, 77%, 86%, and 70%, respectively. The metabolite 2HG was found to be significant in predicting IDH-mutant gliomas through the chi-squared test (p 〈 0.01). The IDH-mutant gliomas also had a significantly higher NAA/Cr ratio (1.20 ± 0.09 vs. 0.75 ± 0.12 p = 0.016) and lower Glx/Cr ratio (0.86 ± 0.078 vs. 1.88 ± 0.66; p = 0.029) than those with IDH wild-type gliomas. The areas under the ROC curves for NAA/Cr and Glx/Cr were 0.808 and 0.786, respectively. Conclusions: Noninvasive optimized 1H-MRS may be useful in predicting IDH mutational status and 2HG may serve as a valuable diagnostic and prognostic biomarker in patients with gliomas
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancers, MDPI AG, Vol. 15, No. 3 ( 2023-02-02), p. 951-
    Abstract: This study aimed to investigate the potential of quantitative radiomic data extracted from conventional MR images in discriminating IDH-mutant grade 4 astrocytomas from IDH-wild-type glioblastomas (GBMs). A cohort of 57 treatment-naïve patients with IDH-mutant grade 4 astrocytomas (n = 23) and IDH-wild-type GBMs (n = 34) underwent anatomical imaging on a 3T MR system with standard parameters. Post-contrast T1-weighted and T2-FLAIR images were co-registered. A semi-automatic segmentation approach was used to generate regions of interest (ROIs) from different tissue components of neoplasms. A total of 1050 radiomic features were extracted from each image. The data were split randomly into training and testing sets. A deep learning-based data augmentation method (CTGAN) was implemented to synthesize 200 datasets from the training sets. A total of 18 classifiers were used to distinguish two genotypes of grade 4 astrocytomas. From generated data using 80% training set, the best discriminatory power was obtained from core tumor regions overlaid on post-contrast T1 using the K-best feature selection algorithm and a Gaussian naïve Bayes classifier (AUC = 0.93, accuracy = 0.92, sensitivity = 1, specificity = 0.86, PR_AUC = 0.92). Similarly, high diagnostic performances were obtained from original and generated data using 50% and 30% training sets. Our findings suggest that conventional MR imaging-based radiomic features combined with machine/deep learning methods may be valuable in discriminating IDH-mutant grade 4 astrocytomas from IDH-wild-type GBMs.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...