GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Microorganisms, MDPI AG, Vol. 8, No. 11 ( 2020-10-29), p. 1680-
    Abstract: Every year and all over the world the fungal decay of fresh fruit and vegetables frequently generates substantial economic losses. Synthetic fungicides, traditionally used to efficiently combat the putrefactive agents, emerged, however, as the cause of environmental and human health issues. Given the need to seek for alternatives, several biological approaches were followed, among which those with killer yeasts stand out. Here, after the elaboration of the complex of problems, we explain the hitherto known yeast killer mechanisms and present the implementation of yeasts displaying such phenotype in biocontrol strategies for pre- or postharvest treatments to be aimed at combating postharvest fungal decay in numerous agricultural products.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Microorganisms, MDPI AG, Vol. 10, No. 5 ( 2022-05-05), p. 969-
    Abstract: Blueberry production is affected by fungal postharvest pathogens, including Botrytis cinerea and Alternaria alternata, the causative agents of gray mold disease and Alternaria rot, respectively. Biocontrol agents adapted to blueberries and local environments are not known to date. Here, we report on the search for and the identification of cultivable blueberry epiphytic bacteria with the potential to combat the aforementioned fungi. Native, blueberry-borne bacterial strains were isolated from a plantation in Tucumán, Argentina and classified based on 16S rRNA gene sequences. Antagonistic activities directed at B. cinerea and A. alternata were studied in vitro and in vivo. The 22 bacterial strains obtained could be attributed to eleven different genera: Rosenbergiella, Fictibacillus, Bacillus, Pseudomonas, Microbacterium, Asaia, Acinetobacter, Curtobacterium, Serratia, Sphingomonas and Xylophilus. Three strains displaying antagonistic impacts on the fungal pathogens were identified as Bacillus velezensis (BA3 and BA4) and Asaia spathodeae (BMEF1). These strains are candidates for biological control agents of local blueberry production and might provide a basis for the development of eco-friendly, sustainable alternatives to synthetic pesticides.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2720891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Fungi, MDPI AG, Vol. 7, No. 3 ( 2021-02-25), p. 166-
    Abstract: Worldwide, the green rot caused by Penicillium digitatum is one of the most aggressive postharvest diseases of lemons. Searching for sustainable alternatives to chemical fungicides, epiphytic yeasts as potential biocontrol agents were isolated from citrus fruits using a tailor-made selective medium. For disclosing their antagonistic potential against P. digitatum, obtained isolates were subjected to direct screening methods, both in vitro and in vivo. In the course of the primary in vitro screening that comprised dual culture assays, 43 yeast strains displaying antagonistic activities against the pathogen were selected. Subsequently, such strains were subjected to an in vivo screening that consisted of a microscale test, allowing the selection of six yeast strains for further analysis. In the final screening using macroscale in vivo tests, three strains (AcL2, AgL21, and AgL2) displaying the highest efficiencies to control P. digitatum were identified. The protection efficiencies in lemons were 80 (AcL2), 76.7 (AgL21), and 75% (AgL2). Based on sequence analysis of the PCR amplified D1/D2 domains of the 26S rRNA genes, they were identified as representatives of the species Clavispora lusitaniae. Interestingly, the strains exhibited a broad action spectrum among citrus fruits as they were also able to combat the green mold disease in grapefruit and two orange varieties. The direct screening methods applied in this study favored the recovery of efficient candidates for application as biological control agents to combat fungal infestations of citrus fruits.
    Type of Medium: Online Resource
    ISSN: 2309-608X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2784229-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...