GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (1)
  • 1
    In: Vaccines, MDPI AG, Vol. 9, No. 3 ( 2021-03-11), p. 245-
    Abstract: New tuberculosis vaccines have made substantial progress in the development pipeline. Previous modelling suggests that adolescent/adult mass vaccination may cost-effectively contribute towards achieving global tuberculosis control goals. These analyses have not considered the budgetary feasibility of vaccine programmes. We estimate the maximum total cost that the public health sectors in India and China should expect to pay to introduce a M72/AS01E-like vaccine deemed cost-effective at country-specific willingness to pay thresholds for cost-effectiveness. To estimate the total disability adjusted life years (DALYs) averted by the vaccination programme, we simulated a 50% efficacy vaccine providing 10-years of protection in post-infection populations between 2027 and 2050 in India and China using a dynamic transmission model of M. tuberculosis. We investigated two mass vaccination strategies, both delivered every 10-years achieving 70% coverage: Vaccinating adults and adolescents (age ≥10y), or only the most efficient 10-year age subgroup (defined as greatest DALYs averted per vaccine given). We used country-specific thresholds for cost-effectiveness to estimate the maximum total cost (Cmax) a government should be willing to pay for each vaccination strategy. Adult/adolescent vaccination resulted in a Cmax of $21 billion (uncertainty interval [UI]: 16–27) in India, and $15B (UI:12–29) in China at willingness to pay thresholds of $264/DALY averted and $3650/DALY averted, respectively. Vaccinating the highest efficiency age group (India: 50–59y; China: 60–69y) resulted in a Cmax of $5B (UI:4–6) in India and $6B (UI:4–7) in China. Mass vaccination against tuberculosis of all adults and adolescents, deemed cost-effective, will likely impose a substantial budgetary burden. Targeted tuberculosis vaccination, deemed cost-effective, may represent a more affordable approach.
    Type of Medium: Online Resource
    ISSN: 2076-393X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2703319-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...