GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
Material
Publisher
  • MDPI AG  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Cancers Vol. 14, No. 19 ( 2022-10-09), p. 4939-
    In: Cancers, MDPI AG, Vol. 14, No. 19 ( 2022-10-09), p. 4939-
    Abstract: MicroRNA (miRNA) alterations significantly impact the formation and progression of human cancers. miRNAs interact with messenger RNAs (mRNAs) to facilitate degradation or translational repression. Thus, identifying miRNA–mRNA regulatory modules in cohorts of primary tumor tissues are fundamental for understanding the biology of tumor heterogeneity and precise diagnosis and treatment. We established a multitask learning sparse regularized factor regression (MSRFR) method to determine key tissue- and cohort-specific miRNA–mRNA regulatory modules from expression profiles of tumors. MSRFR simultaneously models the sparse relationship between miRNAs and mRNAs and extracts tissue- and cohort-specific miRNA–mRNA regulatory modules separately. We tested the model’s ability to determine cohort-specific regulatory modules of multiple cancer cohorts from the same tissue and their underlying tissue-specific regulatory modules by extracting similarities between cancer cohorts (i.e., blood, kidney, and lung). We also detected tissue-specific and cohort-specific signatures in the corresponding regulatory modules by comparing our findings from various other tissues. We show that MSRFR effectively determines cancer-related miRNAs in cohort-specific regulatory modules, distinguishes tissue- and cohort-specific regulatory modules from each other, and extracts tissue-specific information from different cohorts of disease-related tissue. Our findings indicate that the MSRFR model can support current efforts in precision medicine to define tumor-specific miRNA–mRNA signatures.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2018
    In:  Energies Vol. 12, No. 1 ( 2018-12-26), p. 69-
    In: Energies, MDPI AG, Vol. 12, No. 1 ( 2018-12-26), p. 69-
    Abstract: Wind speed modelling is of increasing interest, both for basic research and for applications, as, e.g., for wind turbine development and strategies to construct large wind power plants. Generally, such modelling is hampered by the non-stationary features of wind speed data that, to a large extent, reflect the turbulent dynamics in the atmosphere. We study how these features can be captured by nested ARIMA models. In this approach, wind speed fluctuations in given time windows are modelled by one stochastic process, and the parameter variation between successive windows by another one. For deriving the wind speed model, we use 20 months of data collected at the FINO1 platform at the North Sea and use a variable transformation that best maps the wind speed onto a Gaussian random variable. We find that wind speed increments can be well reproduced for up to four standard deviations. The distributions of extreme variations, however, strongly deviate from the model predictions.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...